【題目】如圖,在平面直角坐標(biāo)系中,橢圓 的離心率為,直線ly=2上的點和橢圓上的點的距離的最小值為1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 已知橢圓的上頂點為A,點BC上的不同于A的兩點,且點B,C關(guān)于原點對稱,直線AB,AC分別交直線l于點EF.記直線的斜率分別為

① 求證: 為定值;

② 求△CEF的面積的最小值.

【答案】(Ⅰ)(Ⅱ)①詳見解析②

【解析】試題分析:

(1)由題意求得 的值,結(jié)合橢圓焦點位于 軸上寫出標(biāo)準(zhǔn)方程即可;

(2)①中,分別求得 的值,然后求解其乘積即可證得結(jié)論;

②中,聯(lián)立直線與橢圓的方程,利用面積公式得出三角形面積的解析式,最后利用均值不等式求得面積的最小值即可.

試題解析:

(Ⅰ)由題知,由,

所以

故橢圓的方程為

(Ⅱ)① 證法一:設(shè),則

因為點BC關(guān)于原點對稱,則,

所以

證法二:直線AC的方程為

,

解得,同理,

因為BO,C三點共線,則由,

整理得,

所以

②直線AC的方程為,直線AB的方程為,不妨設(shè),則,

y=2,得,

,

所以,△CEF的面積

,

,當(dāng)且僅當(dāng)取得等號,

所以△CEF的面積的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,是定義在R上的奇函數(shù). (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一企業(yè)從某條生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測量這些產(chǎn)品的某項技術(shù)指標(biāo)值x,得到如下的頻率分布表:

x

[11,13)

[13,15)

[15,17)

[17,19)

[19,21)

[21,23)

頻數(shù)

2

12

34

38

10

4

(Ⅰ)作出樣本的頻率分布直方圖,并估計該技術(shù)指標(biāo)值x的平均數(shù)和眾數(shù);

(Ⅱ)若x<13或x≥21,則該產(chǎn)品不合格.現(xiàn)從不合格的產(chǎn)品中隨機(jī)抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標(biāo)值小于13的產(chǎn)品恰有一件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={﹣2,3a﹣1,a2﹣3},B={a﹣2,a﹣1,a+1},若A∩B={﹣2},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(Ⅰ) 求曲線交點的平面直角坐標(biāo);

(Ⅱ) 點分別在曲線, 上,當(dāng)最大時,求的面積(為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0且a≠1,下列四組函數(shù)中表示相等函數(shù)的是(
A.y=logax與y=(logxa)1
B.y=2x與y=logaa2x
C. 與y=x
D.y=logax2與y=2logax

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):R(x)= ,其中x是儀器的月產(chǎn)量.(注:總收益=總成本+利潤)
(1)將利潤x表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的鋼板的邊界是拋物線的一部分,垂直于拋物線對稱軸,現(xiàn)欲從鋼板上截取一塊以為下底邊的等腰梯形鋼板,其中均在拋物線弧上.設(shè)(米),且.

1)當(dāng)時,求等腰梯形鋼板的面積;

2)當(dāng)為何值時,等腰梯形鋼板的面積最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,

(1)當(dāng)時,求曲線在點處的切線方程;

(2)討論函數(shù)的單調(diào)性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

同步練習(xí)冊答案