【題目】已知集合A={x|0< ≤1},B={y|y=( x , 且x<﹣1}
(1)若集合C={x|x∈A∪B,且xA∩B},求集合C;
(2)設(shè)集合D={x|3﹣a<x<2a﹣1},滿足A∪D=A,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:集合A={x|0< ≤1}=(1,4],B={y|y=( x,且x<﹣1}=(2,+∞);

∴A∪B=(1,+∞);A∩B=(2,4],

∴集合C={x|x∈A∪B,且xA∩B}=(1,2]∪(4,+∞)


(2)解:∵A∪D=A,

∴DA

D=,3﹣a≥2a﹣1,∴a≤ ,

D≠ ,∴ <a≤2.

綜上,a≤2


【解析】(1)化簡集合A,B,利用集合C={x|x∈A∪B,且xA∩B},求集合C;(2)設(shè)集合D={x|3﹣a<x<2a﹣1},滿足A∪D=A,DA,分類討論求實(shí)數(shù)a的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a=2,解不等式f(x)≥2;
(2)已知f(x)是偶函數(shù),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個(gè)問題中,甲所得為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)求當(dāng)時(shí), 恒成立的的取值范圍,并證明

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足:f(x+1)= ,當(dāng)x∈(0,1]時(shí),f(x)=2x , 則f(log29)等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2 x﹣1(x∈R).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(x0)= ,求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lg(1+3x)的定義域是(
A.(﹣∞,﹣ )?
B.(﹣ , )∪( ,+∞)?
C.( ,+∞)?
D.( , )∪( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x2﹣3ax)對(duì)任意的x1 , x2∈[ ,+∞),x1≠x2時(shí)都滿足 <0,則實(shí)數(shù)a的取值范圍是( )
A.(0,1)
B.(0, ]
C.(0,
D.( , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x , |(x≥0),圖象如圖所示.函數(shù)g(x)=﹣x2﹣2x+a,(x<0),其圖象經(jīng)過點(diǎn)A(﹣1,2).

(1)求實(shí)數(shù)a的值,并在所給直角坐標(biāo)系xOy內(nèi)做出函數(shù)g(x)的圖象;
(2)設(shè)h(x)= ,根據(jù)h(x)的圖象寫出其單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案