【題目】定義:從數(shù)列中抽取項(xiàng)按其在中的次序排列形成一個新數(shù)列,則稱的子數(shù)列;若成等差(或等比),則稱的等差(或等比)子數(shù)列.

(1)記數(shù)列的前項(xiàng)和為,已知.

①求數(shù)列的通項(xiàng)公式;

②數(shù)列是否存在等差子數(shù)列,若存在,求出等差子數(shù)列;若不存在,請說明理由.

(2)已知數(shù)列的通項(xiàng)公式為,證明:存在等比子數(shù)列.

【答案】(1)①;②見解析;(2)見證明

【解析】

1)①先由得到,再由得到通項(xiàng)公式,進(jìn)而可得出結(jié)果;

②假設(shè)從數(shù)列中抽3項(xiàng)成等差,則,根據(jù)等差子數(shù)列的概念,即可得出結(jié)論;

(2)先假設(shè)數(shù)列中存在3項(xiàng),,成等比.設(shè),則,故可設(shè)是互質(zhì)的正整數(shù)).根據(jù)題意,得到需要,再由題中等比子數(shù)列的概念,即可得出結(jié)論.

解:(1)①因?yàn)?/span>,所以當(dāng)時(shí),,

當(dāng)時(shí),,所以.

綜上可知:.

②假設(shè)從數(shù)列中抽3項(xiàng)成等差,

,即,

化簡得:.

因?yàn)?/span>,所以,,且都是整數(shù),

所以為偶數(shù),為奇數(shù),所以不成立.

因此,數(shù)列不存在三項(xiàng)等差子數(shù)列.

若從數(shù)列中抽項(xiàng),其前三項(xiàng)必成等差數(shù)列,不成立.

綜上可知,數(shù)列不存在等差子數(shù)列.

(2)假設(shè)數(shù)列中存在3項(xiàng),,成等比.

設(shè),則,故可設(shè)是互質(zhì)的正整數(shù)).

則需滿足

即需滿足,則需滿足.

,則.

此時(shí)

.

故此時(shí)成立.

因此數(shù)列中存在3項(xiàng),,成等比,

所以數(shù)列存在等比子數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱柱中,的中點(diǎn),點(diǎn)在側(cè)棱上,平面

(1) 證明:的中點(diǎn);

(2) 設(shè),四邊形為邊長為4正方形,四邊形為矩形,且異面直線所成的角為,求該三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個同學(xué)家開了一個小賣部,他為了研究氣溫對熱飲飲料銷售的影響,經(jīng)過統(tǒng)計(jì),得到一個賣出的熱飲杯數(shù)與當(dāng)天氣溫的散點(diǎn)圖和對比表:

攝氏溫度

熱飲杯數(shù)

(1)從散點(diǎn)圖可以發(fā)現(xiàn),各點(diǎn)散布在從左上角到右下角的區(qū)域里。因此,氣溫與當(dāng)天熱飲銷售杯數(shù)之間成負(fù)相關(guān),即氣溫越高,當(dāng)天賣出去的熱飲杯數(shù)越少。統(tǒng)計(jì)中常用相關(guān)系數(shù)來衡量兩個變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計(jì)學(xué)認(rèn)為,對于變量、,如果,那么負(fù)相關(guān)很強(qiáng);如果,那么正相關(guān)很強(qiáng);如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱。請根據(jù)已知數(shù)據(jù),判斷氣溫與當(dāng)天熱飲銷售杯數(shù)相關(guān)性的強(qiáng)弱.

(2)(i)請根據(jù)已知數(shù)據(jù)求出氣溫與當(dāng)天熱飲銷售杯數(shù)的線性回歸方程;

(ii)記為不超過的最大整數(shù),如,.對于(i)中求出的線性回歸方程,將視為氣溫與當(dāng)天熱飲銷售杯數(shù)的函數(shù)關(guān)系.已知?dú)鉁?/span>與當(dāng)天熱飲每杯的銷售利潤的關(guān)系是 (單位:元),請問當(dāng)氣溫為多少時(shí),當(dāng)天的熱飲銷售利潤總額最大?

(參考公式),

(參考數(shù)據(jù)) .

,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四個點(diǎn),,中有3個點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過原點(diǎn)的直線與橢圓交于兩點(diǎn)(,不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線軸、軸分別交于、兩點(diǎn),設(shè)直線,的斜率分別為,證明:存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐P-ABC(如圖1)的展開圖如圖2,其中四邊形ABCD為邊長等于的正方形,ABEBCF均為正三角形,在三棱錐P-ABC.

1)證明:平面PAC⊥平面ABC;

2)若M,N分別是AP,BC的中點(diǎn),請判斷三棱錐M-BCP和三棱錐N-APC體積的大小關(guān)系并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,橢圓的離心率是,的面積是.

1)求橢圓的標(biāo)準(zhǔn)方程.

2)直線與橢圓交于兩點(diǎn)(異于點(diǎn)),若直線與直線的斜率之和為1,證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人參加一個射擊的中獎游戲比賽,在相同條件下各打靶50次,統(tǒng)計(jì)每次打靶所得環(huán)數(shù),得下列頻數(shù)分布表.

環(huán)數(shù)

3

4

5

6

7

8

9

10

甲的頻數(shù)

0

1

4

7

14

16

6

2

乙的頻數(shù)

1

2

5

6

10

16

8

2

比賽中規(guī)定所得環(huán)數(shù)為1,2,3,4時(shí)獲獎一元,所得環(huán)數(shù)為5,6,7時(shí)獲獎二元,所得環(huán)數(shù)為8,9時(shí)獲獎三元,所得環(huán)數(shù)為10時(shí)獲獎四元,沒命中則無獎.

(1)根據(jù)上表,在答題卡給定的坐標(biāo)系內(nèi)畫出甲射擊50次獲獎金額(單位:元)的條形圖;

(2)估計(jì)甲射擊1次所獲獎至少為三元的概率;

(3)要從甲、乙兩人中選拔一人參加射擊比賽,請你根據(jù)甲、乙兩人所獲獎金額的平均數(shù)和方差作出選擇.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓的極坐標(biāo)方程;

(2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,,所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖都是由邊長為1的正方體疊成的幾何體,例如第(1)個幾何體的表面積為6個平方單位,第(2)個幾何體的表面積為18個平方單位,第(3)個幾何體的表面積是36個平方單位.依此規(guī)律,則第個幾何體的表面積是__________個平方單位.

查看答案和解析>>

同步練習(xí)冊答案