【題目】已知橢圓),過原點的兩條直線分別與交于點、、,得到平行四邊形.

1)若,且為正方形,求該正方形的面積.

2)若直線的方程為,關于軸對稱,上任意一點的距離分別為,證明:.

3)當為菱形,且圓內(nèi)切于菱形時,求,滿足的關系式.

【答案】(1)(2)證明見解析(3)

【解析】

1)由題意,直線的方程為,利用 ,可得 ,根據(jù)對稱性,求出正方形的面積;

2)利用距離公式,結合為定值,即可證明結論;

3)設出切線的方程與橢圓方程聯(lián)立,分類討論,即可求滿足的關系式.

[]1)因為為正方形,所以直線的方程為.

、的坐標為方程組的實數(shù)解,

代入橢圓方程,解得.

根據(jù)對稱性,可得正方形的面積.

[證明]2)由題設,直線的方程為,

于是,.

[]3)設與圓相切的切點坐標為,于是切線的方程為.

、的坐標為方程組的實數(shù)解.

①當時,均為正方形,橢圓均過點,于是有.

②當時,將代入,

整理得,于是,

同理可得.

因為為菱形,所以,得,即,

于是,整理得,由

,即.

綜上,,滿足的關系式為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側面是等邊三角形,且平面平面,的中點,,,

1)求證:平面;

2)求二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,為正三角形,且.

(1)證明:直線平面;

(2)若四棱錐的體積為是線段的中點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點上,以為切點的的切線的斜率為,過外一點(不在軸上)作的切線、,點、為切點,作平行于的切線(切點為),點、分別是與的交點(如圖):

1)用、的縱坐標表示直線的斜率;

2)若直線的交點為,證明的中點;

3)設三角形面積為,若將由過外一點的兩條切線及第三條切線(平行于兩切線切點的連線)圍成的三角形叫做切線三角形,如,再由切線三角形,并依這樣的方法不斷作切線三角形……,試利用切線三角形的面積和計算由拋物線及所圍成的陰影部分的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中, 、分別是的中點.

(1)求證:四邊形是菱形;

(2)求異面直線所成角的大小 (結果用反三角函數(shù)值表示) .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱中,底面為等腰梯形,,.平面平面,四邊形為菱形,.

1)求證:;

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20191018-27日,第七屆世界軍人運動會在湖北武漢舉辦,中國代表團共獲得1336442銅,共239枚獎牌.為了調(diào)查各國參賽人員對主辦方的滿意程度,研究人員隨機抽取了500名參賽運動員進行調(diào)查,所得數(shù)據(jù)如下所示,現(xiàn)有如下說法:①在參與調(diào)查的500名運動員中任取1人,抽到對主辦方表示滿意的男性運動員的概率為;②在犯錯誤的概率不超過1%的前提下可以認為是否對主辦方表示滿意與運動員的性別有關;③沒有99.9%的把握認為是否對主辦方表示滿意與運動員的性別有關;則正確命題的個數(shù)為( )附:

男性運動員

女性運動員

對主辦方表示滿意

200

220

對主辦方表示不滿意

50

30

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兩個三口之家,共個大人,個小孩,約定星期日乘紅色、白色兩輛轎車結伴郊游,每輛車最多乘坐人,其中兩個小孩不能獨坐一輛車,則不同的乘車方法種數(shù)是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點,過點的直線交橢圓于兩點,且的周長為12

(Ⅰ)求橢圓的方程

(Ⅱ)過點作斜率為的直線與橢圓交于兩點,試判斷在軸上是否存在點,使得是以為底邊的等腰三角形若存在,求點橫坐標的取值范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案