【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業(yè)甲將經營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷量價格P(元)的關系如圖所示;③每月需各種開支2 000元.

(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;

(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

【答案】見解析

【解析】

解:設該店月利潤余額為L元,

則由題設得L=Q(P-14)×100-3 600-2 000,①

由銷量圖易得Q=

代入①式得L=

(1)當14≤P≤20時,Lmax=450元,此時P=19.5元;

當20<P≤26時,Lmax元,此時P=元.

故當P=19.5元時,月利潤余額最大,為450元.

(2)設可在n年后脫貧,依題意有12n×450-50 000-58 000≥0,解得n≥20.

即最早可望在20年后脫貧.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】地自來苯超標,當?shù)刈詠硭緦λ|檢測后,決定在水中投放一種藥劑來凈化水質,已知每投放質量為藥劑后,經過該藥劑在水中釋放的濃度毫克/升)滿足,其中當藥劑在水中的濃度不低于5(毫/升)時稱為有效凈化;當藥劑在水中的濃度不低于5(毫克/升)且不高于10(毫克/升稱為最佳凈化.

如果投放的藥劑質量為,試問自來水達到有效凈化一共可持續(xù)幾天?

如果投放的藥劑質量,為了使在9天(從投放藥劑算起包括9天)之內的自來水達到最佳凈化,試確定應該投放的藥劑質量最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象上有一點列,點軸上的射影是,且 (), .

(1)求證: 是等比數(shù)列,并求出數(shù)列的通項公式;

(2)對任意的正整數(shù),當時,不等式恒成立,求實數(shù)的取值范圍.

(3)設四邊形的面積是,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

1)若曲線過點,求曲線在點處的切線方程;

2)求函數(shù)在區(qū)間上的最大值;

3)若函數(shù)有兩個不同的零點,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20名同學參加某次數(shù)學考試成績(單位:分)的頻率分布直方圖如下:

)求頻率分布直方圖中的值;

)分別求出成績落在, 中的學生人數(shù);

)從成績在的學生中任選2人,求此2人的成績都在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是上、下底邊長為2和6,高為的等腰梯形,將它沿對稱軸折疊,使二面角為直二面角.

(1)證明:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當x[0,1]時,f(x)=x,則函數(shù)y=f(x)-log3|x|的零點個數(shù)是( )

A.多于4個 B.4個

C.3個 D.2個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是邊長為的菱形,,.

(1)證明:平面;

(2)若,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)圖象過點,且在該點處的切線與直線垂直

(1)求實數(shù),的值;

(2)對任意給定的正實數(shù),曲線上是否存在兩點,,使得是以為直角頂點的直角三角形,且此三角形斜邊中點在軸上?

查看答案和解析>>

同步練習冊答案