【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計居民月用水量的中位數(shù).

【答案】(1) (2)36000(3)

【解析】試題分析:本題主要考查頻率分布直方圖、頻率、頻數(shù)的計算等基礎(chǔ)知識,考查學生的分析問題、解決問題的能力. 第()問,由高×組距=頻率,計算每組的頻率,根據(jù)所有頻率之和為1,計算出a的值;第()問,利用高×組距=頻率,先計算出每人月均用水量不低于3噸的頻率,再利用頻率×樣本容量=頻數(shù),計算所求人數(shù);第()問,將前5組的頻率之和與前4組的頻率之和進行比較,得出2≤x<2.5,再估計月均用水量的中位數(shù).

試題解析:()由頻率分布直方圖,可知:月均用水量在[0,0.5)的頻率為0.08×0.5=0.04.

同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等組的頻率分別為0.08,0.21,0.25,0.06,0.04,0.02.

1–0.04+0.08+0.21+0.25+0.06+0.04+0.02=0.5×a+0.5×a,

解得a=0.30.

)由(),100位居民月均用水量不低于3噸的頻率為0.06+0.04+0.02=0.12.

由以上樣本的頻率分布,可以估計30萬居民中月均用水量不低于3噸的人數(shù)為300 000×0.12="36" 000.

)設(shè)中位數(shù)為x.

因為前5組的頻率之和為0.04+0.08+0.15+0.21+0.25=0.730.5,

而前4組的頻率之和為0.04+0.08+0.15+0.21=0.48<0.5

所以2≤x<2.5.

0.50×x–2=0.5–0.48,解得x=2.04.

故可估計居民月均用水量的中位數(shù)為2.04.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax+x2﹣xlna(a>0且a≠1)
(1)求函數(shù)f(x)單調(diào)遞增區(qū)間;
(2)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然對數(shù)的底數(shù)),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,與函數(shù) 的定義域相同的函數(shù)是(
A.y(x)=x?ex
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,若關(guān)于的方程恰好有 4 個不相等的實數(shù)解,則實數(shù)的取值范圍為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】劉徽(約公元 225 —295 年)是魏晉時期偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話:斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:此術(shù)臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的鱉臑(biē nào,就是在對長方體進行分割時所產(chǎn)生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面 垂直于,且 ,則三棱錐的外接球的球面面積為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在10個球中有6個紅球和4個白球(各不相同),不放回地依次摸出2個球,在第一次摸出紅球的條件下,第2次也摸到紅球的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(2,0)及圓C:x2+y2﹣6x+4y+4=0.
(1)設(shè)過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設(shè)直線ax﹣y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校有高級教師20人,中級教師30人,其他教師若干人,為了了解該校教師的工資收入情況,擬按分層抽樣的方法從該校所有的教師中抽取20人進行調(diào)查.已知從其他教師中共抽取了10人,則該校共有教師人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,且,.四邊形滿足,,.為側(cè)棱的中點,為側(cè)棱上的任意一點.

(1)若的中點,求證: 面平面;

(2)是否存在點,使得直線與平面垂直? 若存在,寫出證明過程并求出線段的長;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案