【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是t是參數(shù)).在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線.

1)當(dāng),時(shí),求直線l與曲線C的直角坐標(biāo)方程;

2)當(dāng)時(shí),若直線l與曲線C相交于A,B兩點(diǎn),設(shè),且,求直線l的傾斜角.

【答案】1,;(2)直線l的傾斜角為.

【解析】

1)利用加減消元法、極坐標(biāo)與直角坐標(biāo)互化公式進(jìn)行求解即可;

2)將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程中,利用參數(shù)的意義結(jié)合一元二次方程根與系數(shù)進(jìn)行求解即可.

1)當(dāng),時(shí),,

,所以直線l與曲線C的直角坐標(biāo)方程分別為:,

2)將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程中,得:,方程兩根為,直線l,因?yàn)?/span>

,所以有,.

所以直線l的傾斜角為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某廠工人生產(chǎn)某件產(chǎn)品的效率,隨機(jī)抽查了100名工人某天生產(chǎn)該產(chǎn)品的數(shù)量,所取樣本數(shù)據(jù)分組區(qū)間為,由此得到如圖所示頻率分布直方圖.

1)求的值并估計(jì)該廠工人一天生產(chǎn)此產(chǎn)品數(shù)量的平均值;

2)從生產(chǎn)產(chǎn)品數(shù)量在的四組工人中,用分層抽樣方法抽取13人,則每層各應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,側(cè)面為等邊三角形,側(cè)棱.

1)求證:平面平面;

2)求三棱錐外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了改善居民的休閑娛樂活動場所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路、,要求點(diǎn)的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊時(shí)上,且.

1)設(shè),試求的周長關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;

2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次數(shù)學(xué)知識比賽中共有6個(gè)不同的題目,每位同學(xué)從中隨機(jī)抽取3個(gè)題目進(jìn)行作答,已知這6個(gè)題目中,甲只能正確作答其中的4個(gè),而乙正確作答每個(gè)題目的概率均為,且甲、乙兩位同學(xué)對每個(gè)題目的作答都是相互獨(dú)立、互不影響的.

1)求甲、乙兩位同學(xué)總共正確作答3個(gè)題目的概率;

2)若甲、乙兩位同學(xué)答對題目個(gè)數(shù)分別是,由于甲所在班級少一名學(xué)生參賽,故甲答對一題得15分,乙答對一題得10分,求甲乙兩人得分之和的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家“精準(zhǔn)扶貧、精準(zhǔn)脫貧”的號召,某貧困縣在精準(zhǔn)推進(jìn)上下功夫,在精準(zhǔn)扶貧上見實(shí)效.根據(jù)當(dāng)?shù)貧夂蛱攸c(diǎn)大力發(fā)展中醫(yī)藥產(chǎn)業(yè),藥用昆蟲的使用相應(yīng)愈來愈多,每年春暖以后到寒冬前,昆蟲大量活動與繁殖,易于采取各種藥用昆蟲.已知一只藥用昆蟲的產(chǎn)卵數(shù)(單位:個(gè))與一定范圍內(nèi)的溫度(單位:)有關(guān),于是科研人員在月份的天中隨機(jī)選取了天進(jìn)行研究,現(xiàn)收集了該種藥物昆蟲的組觀察數(shù)據(jù)如表:

日期

溫度

產(chǎn)卵數(shù)個(gè)

1)從這天中任選天,記這天藥用昆蟲的產(chǎn)卵數(shù)分別為、,求“事件,均不小于”的概率?

2)科研人員確定的研究方案是:先從這組數(shù)據(jù)中任選組,用剩下的組數(shù)據(jù)建立線性回歸方程,再對被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

①若選取的是日與日這組數(shù)據(jù),請根據(jù)日、日和日這三組數(shù)據(jù),求出關(guān)于的線性回歸方程?

②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的差的絕對值均不超過個(gè),則認(rèn)為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?

附公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著時(shí)代的發(fā)展,A城市的競爭力、影響力日益卓著,這座創(chuàng)新引領(lǐng)型城市有望踏上向“全球城市”發(fā)起“沖擊”的新征程.A城市的活力與包容無不吸引著無數(shù)懷揣夢想的年輕人前來發(fā)展,目前A城市的常住人口大約為1300.近日,某報(bào)社記者作了有關(guān)“你來A城市發(fā)展的理由”的調(diào)查問卷,參與調(diào)查的對象年齡層次在25~44歲之間.收集到的相關(guān)數(shù)據(jù)如下:

A城市發(fā)展的理由

人數(shù)

合計(jì)

自然環(huán)境

1.森林城市,空氣清新

200

300

2.降水充足,氣候怡人

100

人文環(huán)境

3.城市服務(wù)到位

150

700

4.創(chuàng)業(yè)氛圍好

300

5.開放且包容

250

合計(jì)

1000

1000

1)根據(jù)以上數(shù)據(jù),預(yù)測40025~44歲年齡的人中,選擇“創(chuàng)業(yè)氛圍好”來A城市發(fā)展的有多少人;

2)從所抽取選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中,利用分層抽樣的方法抽取6人,從這6人中再選取3人發(fā)放紀(jì)念品.求選出的3人中至少有2人選擇“森林城市,空氣清新”的概率;

3)在選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中有100名男性;在選擇“人文環(huán)境”作為來A城市發(fā)展的理由的700人中有400名男性;請?zhí)顚懴旅?/span>列聯(lián)表,并判斷是否有的把握認(rèn)為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關(guān)?

自然環(huán)境

人文環(huán)境

合計(jì)

合計(jì)

附:,.

P

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎(jiǎng)促銷活動,顧客購買每滿元的商品即可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則如下:抽獎(jiǎng)?wù)邤S各面標(biāo)有點(diǎn)數(shù)的正方體骰子次,若擲得點(diǎn)數(shù)大于,則可繼續(xù)在抽獎(jiǎng)箱中抽獎(jiǎng);否則獲得三等獎(jiǎng),結(jié)束抽獎(jiǎng),已知抽獎(jiǎng)箱中裝有個(gè)紅球與個(gè)白球,抽獎(jiǎng)?wù)邚南渲腥我饷?/span>個(gè)球,若個(gè)球均為紅球,則獲得一等獎(jiǎng),若個(gè)球?yàn)?/span>個(gè)紅球和個(gè)白球,則獲得二等獎(jiǎng),否則,獲得三等獎(jiǎng)(抽獎(jiǎng)箱中的所有小球,除顏色外均相同).

,求顧客參加一次抽獎(jiǎng)活動獲得三等獎(jiǎng)的概率;

若一等獎(jiǎng)可獲獎(jiǎng)金元,二等獎(jiǎng)可獲獎(jiǎng)金元,三等獎(jiǎng)可獲獎(jiǎng)金元,記顧客一次抽獎(jiǎng)所獲得的獎(jiǎng)金為,若商場希望的數(shù)學(xué)期望不超過元,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案