如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BDAE,BD=2AE,AE⊥AB,M為AB的中點(diǎn).
(1)證明:CM⊥DE;
(2)在邊AC上找一點(diǎn)N,使CD平面BEN.
精英家教網(wǎng)
(1)證明:因?yàn)锽C=AC,M為AB中點(diǎn).所以CM⊥AB,
又因?yàn)槠矫鍭BC⊥平面ABDE,平面ABC∩平面ABDE=AB,CM?平面ABC,
所以CM⊥平面ABDE,
又因DE?平面ABDE,所以CM⊥DE;(7分)
(2)當(dāng)
AN
AC
=
1
3
時(shí),CD平面BEN.
連接AD交BE于點(diǎn)K,連接KN,
因梯形ABDE中BDAE,BD=2AE,
所以
AK
KD
=
AE
BD
=
1
2
,則
AK
AD
=
1
3

又因
AN
AC
=
1
3
,所以KNCD(14分)
又KN?平面BEN,CD?平面BEN,所以CD平面BEN.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M為AB的中點(diǎn).
(1)證明:CM⊥DE;
(2)在邊AC上找一點(diǎn)N,使CD∥平面BEN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點(diǎn).
(1)證明:CO⊥DE;
(2)求二面角C-DE-A的正切值大。
(3)求B到平面CDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點(diǎn).
(1)證明:CO⊥DE;
(2)求二面角C-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點(diǎn).

(Ⅰ)證明:CO⊥DE;

(Ⅱ)求二面角C—DE—A的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案