【題目】已知函數(shù)f(x)=aex﹣x,
(1)求f(x)的單調(diào)區(qū)間,
(2)若關(guān)于x不等式aex≥x+b對(duì)任意和正數(shù)b恒成立,求的最小值.
【答案】(1)答案見解析.(2)
【解析】
(1)先求導(dǎo),再分類討論,根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出;
(2)先根據(jù)(1)利用導(dǎo)數(shù)和函數(shù)最值的關(guān)系求出,可得,設(shè),利用導(dǎo)數(shù)求出函數(shù)的最小值即可.
(1)f′(x)=aex﹣1,
當(dāng)a≤0時(shí), <0,f(x)在R上單調(diào)遞減,
若a>0時(shí),令=aex﹣1=0,x=﹣lna,
在x>﹣lna時(shí), >0,f(x)為增函數(shù),
在x<﹣lna時(shí), <0,f(x)為減函數(shù),
所以,當(dāng)時(shí),的單調(diào)減區(qū)間為,無增區(qū)間;
當(dāng)時(shí),的單調(diào)減區(qū)間為,增區(qū)間為.
(2)f(x)=aex﹣x,由題意f(x)min≥b,
由(1)可知,當(dāng)a≤0時(shí),f(x)在R上單調(diào)遞減,無最小值,不符合題意,
當(dāng)a>0時(shí),f(x)min=f(﹣lna)=1+lna≥b,
∴,
設(shè)h(a),則 ,
a∈(0,1], <0;a∈[1,+∞),≥0,
∴h(a)min=h(1)=1.
所以的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年月日,某地援鄂醫(yī)護(hù)人員,,,,,,人(其中是隊(duì)長(zhǎng))圓滿完成抗擊新冠肺炎疫情任務(wù)返回本地,他們受到當(dāng)?shù)厝罕娕c領(lǐng)導(dǎo)的熱烈歡迎.當(dāng)?shù)孛襟w為了宣傳他們的優(yōu)秀事跡,讓這名醫(yī)護(hù)人員和接見他們的一位領(lǐng)導(dǎo)共人站一排進(jìn)行拍照,則領(lǐng)導(dǎo)和隊(duì)長(zhǎng)站在兩端且相鄰,而不相鄰的排法種數(shù)為( )
A.種B.種C.種D.種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高速公路全程設(shè)有2n(n≥4,)個(gè)服務(wù)區(qū).為加強(qiáng)駕駛?cè)藛T的安全意識(shí),現(xiàn)規(guī)劃在每個(gè)服務(wù)區(qū)的入口處設(shè)置醒目的宣傳標(biāo)語A或宣傳標(biāo)語B.
(1)若每個(gè)服務(wù)區(qū)入口處設(shè)置宣傳標(biāo)語A的概率為,入口處設(shè)置宣傳標(biāo)語B的服務(wù)區(qū)有X個(gè),求X的數(shù)學(xué)期望;
(2)試探究全程兩種宣傳標(biāo)語的設(shè)置比例,使得長(zhǎng)途司機(jī)在走該高速全程中,隨機(jī)選取3個(gè)服務(wù)區(qū)休息,看到相同宣傳標(biāo)語的概率最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn),分別是曲線,上兩動(dòng)點(diǎn)且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過拋物線的焦點(diǎn),上的點(diǎn)與的兩個(gè)焦點(diǎn)所構(gòu)成的三角形的周長(zhǎng)為.
(1)求的方程;
(2)若點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,過點(diǎn)作直線交于另一點(diǎn),交軸于點(diǎn),且∥.判斷是否為定值,若是求出該值;若不是請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用 y(萬元),有如下的統(tǒng)計(jì)資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料可知y對(duì)x呈線性相關(guān)關(guān)系,且線性回歸方程為y=a+bx,其中已知b=1.23,請(qǐng)估計(jì)使用年限為20年時(shí),維修費(fèi)用約為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,P是橢圓的上頂點(diǎn),過點(diǎn)P作斜率為的直線l交橢圓于另一點(diǎn)A,設(shè)點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B
(1)求面積的最大值;
(2)設(shè)線段PB的中垂線與y軸交于點(diǎn)N,若點(diǎn)N在橢圓內(nèi)部,求斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與y軸交于點(diǎn),與x軸交于A,B兩點(diǎn),其中,.
(1)求函數(shù)的解析式;
(2)將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的(縱坐標(biāo)不變),得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知等邊的邊長(zhǎng)為3,點(diǎn),分別是邊,上的點(diǎn),且,.如圖2,將沿折起到的位置.
(1)求證:平面平面;
(2)給出三個(gè)條件:①;②二面角大小為;③.在這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題的條件中,并作答:在線段上是否存在一點(diǎn),使直線與平面所成角的正弦值為,若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.注:如果多個(gè)條件分別解答,按第一個(gè)解答給分
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com