【題目】已知橢圓 過點(diǎn)(0,﹣2),F(xiàn)1 , F2分別是其左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P是橢圓上一點(diǎn),PF1⊥x軸,且△OPF1的面積為 ,
(1)求橢圓E的離心率和方程;
(2)設(shè)A,B是橢圓上兩動(dòng)點(diǎn),若直線AB的斜率為 ,求△OAB面積的最大值.

【答案】
(1)解:由題意可得:b=2.由PF1⊥x軸,把x=c代入題意可得: + =1,解得y=

∵△OPF1的面積為 ,∴ = ,可得: = =e,又a2=b2+c2

聯(lián)立解得a2=8,c=2.

∴橢圓E的方程為: =1


(2)解:設(shè)直線AB的方程為:y=﹣ x+t,與橢圓方程聯(lián)立可得:9x2﹣8tx+16t2﹣64=0.

△=64t2﹣36(16t2﹣64)>0,解得 <t<

∴x1+x2= ,x1x2= ,

∴|AB|= = =

點(diǎn)O到直線AB的距離d=

∴SOAB= |AB|d= × =2 .當(dāng)且僅當(dāng)t= 時(shí)取等號(hào),滿足△>0.

∴△OAB面積的最大值為2


【解析】(1)由題意可得:b=2.由PF1⊥x軸,把x=c代入題意可得: + =1,解得y= .可得 = ,可得: = =e,又a2=b2+c2,聯(lián)立解得a2,c.即可得出.(2)設(shè)直線AB的方程為:y=﹣ x+t,與橢圓方程聯(lián)立可得:9x2﹣8tx+16t2﹣64=0.△>0,利用根與系數(shù)的關(guān)系可得:|AB|= .點(diǎn)O到直線AB的距離d= .可得SOAB= |AB|d,利用基本不等式的性質(zhì)即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用橢圓的概念的相關(guān)知識(shí)可以得到問題的答案,需要掌握平面內(nèi)與兩個(gè)定點(diǎn),的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡稱為橢圓,這兩個(gè)定點(diǎn)稱為橢圓的焦點(diǎn),兩焦點(diǎn)的距離稱為橢圓的焦距.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a2=6,a3+a6=27.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前n項(xiàng)和為Sn , 且Tn= ,若對(duì)于一切正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中點(diǎn).
(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求直線DH與平面BDEF所成角的正弦值;
(Ⅲ)求二面角H﹣BD﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+1,g(x)=2aln(x﹣1)(a∈R).
(1)求函數(shù)h(x)=f(x)﹣g(x)的極值;
(2)當(dāng)a>0時(shí),若存在實(shí)數(shù)k,m使得不等式g(x)≤kx+m≤f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程為(x﹣3)2+(y﹣4)2=16,過直線l:6x+8y﹣5a=0(a>0)上的任意一點(diǎn)作圓的切線,若切線長的最小值為 ,則直線l在y軸上的截距為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名運(yùn)動(dòng)員的5次測試成績?nèi)鐖D所示,設(shè)s1 , s2分別表示甲、乙兩名運(yùn)動(dòng)員成績的標(biāo)準(zhǔn)差, 、 分別表示甲、乙兩名運(yùn)動(dòng)員測試成績的平均數(shù),則有(
A. ,s1<s2
B. ,s1<s2
C. ,s1>s2
D. ,s1>s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】=在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知2(tanA+tanB)= +
(Ⅰ)證明:a+b=2c;
(Ⅱ)求cosC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉行高二理科學(xué)生的數(shù)學(xué)與物理競賽,并從中抽取72名學(xué)生進(jìn)行成績分析,所得學(xué)生的及格情況統(tǒng)計(jì)如表:

物理及格

物理不及格

合計(jì)

數(shù)學(xué)及格

28

8

36

數(shù)學(xué)不及格

16

20

36

合計(jì)

44

28

72


(1)根據(jù)表中數(shù)據(jù),判斷是否是99%的把握認(rèn)為“數(shù)學(xué)及格與物理及格有關(guān)”;
(2)若以抽取樣本的頻率為概率,現(xiàn)在該校高二理科學(xué)生中,從數(shù)學(xué)及格的學(xué)生中隨機(jī)抽取3人,記X為這3人中物理不及格的人數(shù),從數(shù)學(xué)不及格學(xué)生中隨機(jī)抽取2人,記Y為這2人中物理不及格的人數(shù),記ξ=|X﹣Y|,求ξ的分布列及數(shù)學(xué)期望. 附:x2=

P(X2≥k)

0.150

0.100

0.050

0.010

k

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的左、右頂點(diǎn)分別為A1、A2 , 上、下頂點(diǎn)分別為B2、B1 , O為坐標(biāo)原點(diǎn),四邊形A1B1A2B2的面積為4,且該四邊形內(nèi)切圓的方程為x2+y2=
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個(gè)不同的動(dòng)點(diǎn),直線OM、ON的斜率之積等于﹣ ,試探求△OMN的面積是否為定值,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案