【題目】下列命題:①“存在,使得成立的充分不必要條件;②“存在,使得成立的必要條件;③“不等式對一切恒成立的充要條件. 其中所以真命題的序號是

A.B.②③C.①②D.①③

【答案】B

【解析】

選項①當時,必存在nN*,使得成立,故前者是后者的充分條件,

但存在nN*,使得成立時,a即為nN*,時的取值范圍,即,故應是存在nN*,使得成立的充要條件,故①錯誤;

選項②當存在nN*,使得成立時,a只需大于nN*,時的最小取值即可,故可得a0,故“a0”存在nN*,使得成立的必要條件,故②正確;

選項③由①知,當nN*的取值范圍為,故當時,必有不等式對一切nN*恒成立,而要使不等式對一切nN*恒成立,只需a大于的最大值即可,即a不等式對一切nN*恒成立的充要條件,③正確.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若的極大值點,求的取值范圍;

(2)當,時,方程(其中)有唯一實數(shù)解,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD底面為正方形,PD⊥平面ABCD,PD=AD,M為線段PA上任意一點(不含端點),點N在線段BD上,且PM=DN.

1)求證:直線MN∥平面PCD.

2)若點M為線段PA的中點,求直線PB與平面AMN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=lnx+﹣1,a∈R.

(1)當a>0時,若函數(shù)fx)在區(qū)間[1,3]上的最小值為,求a的值;

(2)討論函數(shù)gx)=f′(x)﹣零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,及圓

1)求過點的圓的切線方程;

2)若過點的直線與圓相交,截得的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,半徑為2切直線MN于點P,射線PKPN出發(fā)繞點P逆時針方向旋轉(zhuǎn)到PM,旋轉(zhuǎn)過程中,PK于點Q,設x,弓形PmQ的面積為,那么的圖象大致是  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個正數(shù)依次圍成一個圓圈,其中是公差為的等差數(shù)列,而是公比為的等比數(shù)列.

1)若,求數(shù)列的所有項的和;

2)若,求的最大值;

3)當時是否存在正整數(shù),滿足?若存在,求出值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為4的菱形中,,于點,將沿折起到的位置,使,如圖2.

(1)求證:平面

(2)求二面角的余弦值;

(3)判斷在線段上是否存在一點,使平面平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個不同的紅球和個不同的白球,放入同一個袋中,現(xiàn)從中取出個球.

1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少種不同的取法;

2)取出一個紅球記分,取出一個白球記分,若取出個球的總分不少于分,則有多少種不同的取法;

3)若將取出的個球放入一箱子中,記“從箱子中任意取出個球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個紅球并且恰有一次取到個白球的概率.

查看答案和解析>>

同步練習冊答案