【題目】已知函數(shù)f(x)=ln(1+x2)+ax.(a≤0)
(1)若f(x)在x=0處取得極值,求a的值;
(2)討論f(x)的單調(diào)性;
(3)證明:(1+ )(1+ )…(1+ )< (n∈N* , e為自然對(duì)數(shù)的底數(shù)).

【答案】
(1)解:∵ ,∵x=0使f(x)的一個(gè)極值點(diǎn),則f'(0)=0,

∴a=0,驗(yàn)證知a=0符合條件


(2)解:∵

①若a=0時(shí),∴f(x)在(0,+∞)單調(diào)遞增,在(﹣∞,0)單調(diào)遞減;

②若 得,當(dāng)a≤﹣1時(shí),f'(x)≤0對(duì)x∈R恒成立,

∴f(x)在R上單調(diào)遞減.

③若﹣1<a<0時(shí),由f'(x)>0得ax2+2x+a>0

再令f'(x)<0,可得

上單調(diào)遞增,

綜上所述,若a≤﹣1時(shí),f(x)在(﹣∞,+∞)上單調(diào)遞減;

若﹣1<a<0時(shí), 上單調(diào)遞增 上單調(diào)遞減;

若a=0時(shí),f(x)在(0,+∞)單調(diào)遞增,在(﹣∞,0)單調(diào)遞減


(3)解:由(2)知,當(dāng)a=﹣1時(shí),f(x)在(﹣∞,+∞)單調(diào)遞減

當(dāng)x∈(0,+∞)時(shí),由f(x)<f(0)=0

∴l(xiāng)n(1+x2)<x,∴l(xiāng)n[(1+ )(1+ )…(1+ )]=ln(1+ )+ln(1+ )+…+ln(1+

+ +…+ = = (1﹣ )< ,∴(1+ )(1+ )…(1+ )< =


【解析】(1)求出f′(x),因?yàn)閒(x)在x=0時(shí)取得極值,所以f'(0)=0,代入求出a即可;(2)分三種情況:a=0;a≤﹣1;﹣1<a<0,令f′(x)>0得到函數(shù)的遞增區(qū)間;令f′(x)<0得到函數(shù)的遞減區(qū)間即可;(3)由(2)知當(dāng)a=﹣1時(shí)函數(shù)為減函數(shù),所以得到ln(1+x2)<x,利用這個(gè)結(jié)論根據(jù)對(duì)數(shù)的運(yùn)算法則化簡(jiǎn)不等式的左邊得證即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的極值與導(dǎo)數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率e=,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設(shè)直線(xiàn)過(guò)橢圓的左端點(diǎn)A,與橢圓的另一個(gè)交點(diǎn)為B.,AB的垂直平分線(xiàn)交軸于點(diǎn),且·=4,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=ax-lnx,a∈R.

(1)當(dāng)a=1時(shí),求曲線(xiàn)f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程;

(2)是否存在實(shí)數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若f(﹣1)=﹣3,求a

(2)若f(x)的定義域?yàn)镽,求a的取值范圍;

(3)是否存在實(shí)數(shù)a,使f(x)在(﹣∞,2)上為增函數(shù)?若存在,求出a的范圍?若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求方程 x2+2x=5(x>0)的近似解(精確度 0.1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 ,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線(xiàn)l的極坐標(biāo)方程為 ,A,B兩點(diǎn)的極坐標(biāo)分別為
(1)求圓C的普通方程和直線(xiàn)l的直角坐標(biāo)方程;
(2)點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知無(wú)窮數(shù)列{an},a1=1,a2=2,對(duì)任意n∈N* , 有an+2=an , 數(shù)列{bn}滿(mǎn)足bn+1﹣bn=an(n∈N*),若數(shù)列 中的任意一項(xiàng)都在該數(shù)列中重復(fù)出現(xiàn)無(wú)數(shù)次,則滿(mǎn)足要求的b1的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1).

(1)求a,b的值;

(2)求f(log2x)的最小值及相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P在正方體ABCD﹣A1B1C1D1的表面上運(yùn)動(dòng),且P到直線(xiàn)BC與直線(xiàn)C1D1的距離相等,如果將正方體在平面內(nèi)展開(kāi),那么動(dòng)點(diǎn)P的軌跡在展開(kāi)圖中的形狀是(

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案