【題目】下列各組函數(shù)中,表示同一個(gè)函數(shù)的有
①與y=x+1; ②y=x與y=|x|;
③y=|x|與; ④與y=x﹣1.
【答案】③
【解析】解:對(duì)于①,=x+1(x≠1),與y=x+1(x∈R)的定義域不同,所以不是同一函數(shù);
對(duì)于②,y=x(x∈R),與y=|x|(x∈R)的對(duì)應(yīng)關(guān)系不同,所以不是同一函數(shù);
對(duì)于③,y=|x|(x∈R),與=|x|(x∈R)的定義域相同,對(duì)應(yīng)關(guān)系也相同,所以是同一函數(shù);
對(duì)于④,﹣1=|x|﹣1(x∈R),與y=x﹣1(x∈R)的對(duì)應(yīng)關(guān)系不同,所以不是同一函數(shù).
所以答案是:③.
【考點(diǎn)精析】掌握判斷兩個(gè)函數(shù)是否為同一函數(shù)是解答本題的根本,需要知道只有定義域和對(duì)應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1),g(x)=loga(1﹣x)(a>0且a≠1).
(1)求f(x)+g(x)的定義域;
(2)判斷函數(shù)f(x)+g(x)的奇偶性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為,( 為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn),若點(diǎn)是直線上一動(dòng)點(diǎn),過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式2x2﹣2axy+y2≥0對(duì)任意x∈[1,2]及任意y∈[1,4]恒成立,則實(shí)數(shù)a取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若,證明: 在上存在唯一零點(diǎn);
(2)設(shè)函數(shù),( 表示中的較小值),若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=sin2x+ sinxcosx+ ,x∈R,
(1)求函數(shù)f(x)的最小正周期T及在[﹣π,π]上的單調(diào)遞減區(qū)間;
(2)若關(guān)于x的方程f(x)+k=0,在區(qū)間[0, ]上且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若函數(shù)的圖象在處的切線垂直于直線,求實(shí)數(shù)的值及直線的方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正三棱柱ABC﹣A1B1C1的,底面邊長是側(cè)棱長2倍,D、E是A1C1、AC的中點(diǎn),則下面判斷不正確的為( )
A.直線A1E∥平面B1DC
B.直線AD⊥平面B1DC
C.平面B1DC⊥平面ACC1A1
D.直線AC與平面B1DC所成的角為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實(shí)施了機(jī)動(dòng)車車尾號(hào)限行,我市某報(bào)社為了解市區(qū)公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:
(Ⅰ)完成被調(diào)查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求恰有2人不贊成的概率;
(Ⅲ)在(Ⅱ)的條件下,再記選中的4人中不贊成“車輛限行”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com