【題目】已知橢圓 的離心率為 ,且過點 .
(1)求橢圓 的方程;
(2)設不過原點 的直線 與橢圓 交于 兩點,直線 的斜率分別為 ,滿足 ,試問:當 變化時, 是否為定值?若是,求出此定值,并證明你的結論;若不是,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的離心率為 ,且過點
(Ⅰ)求橢圓 的方程;
(Ⅱ)設直線 與圓 相切于點 ,且 與橢圓 只有一個公共點 .
①求證: ;
②當 為何值時, 取得最大值?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標準,其合格產(chǎn)品的質(zhì)量 與尺寸 之間滿足關系式 為大于 的常數(shù)),現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
對數(shù)據(jù)作了處理,相關統(tǒng)計量的值如下表:
(1)根據(jù)所給數(shù)據(jù),求 關于 的回歸方程(提示:由已知, 是 的線性關系);
(2)按照某項指標測定,當產(chǎn)品質(zhì)量與尺寸的比在區(qū)間 內(nèi)時為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率;
(附:對于一組數(shù)據(jù) ,其回歸直線 的斜率和截距的最小二乘法估計值分別為 )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)綜》是明朝程大位所著數(shù)學名著,其中有這樣一段表述:“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一”,其意大致為:有一七層寶塔,每層懸掛的紅燈數(shù)為上一層的兩倍,共有381盞燈,則塔從上至下的第三層有( )盞燈.
A.14
B.12
C.10
D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,江的兩岸可近似地看出兩條平行的直線,江岸的一側(cè)有, 兩個蔬菜基地,江岸的另一側(cè)點處有一個超市.已知、、中任意兩點間的距離為千米,超市欲在之間建一個運輸中轉(zhuǎn)站, , 兩處的蔬菜運抵處后,再統(tǒng)一經(jīng)過貨輪運抵處,由于, 兩處蔬菜的差異,這兩處的運輸費用也不同.如果從處出發(fā)的運輸費為每千米元.從處出發(fā)的運輸費為每千米元,貨輪的運輸費為每千米元.
(1)設,試將運輸總費用(單位:元)表示為的函數(shù),并寫出自變量的取值范圍;
(2)問中轉(zhuǎn)站建在何處時,運輸總費用最?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②基本事件空間是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B為互斥事件,但不是對立事件;
③某校高三(1)班和高三(2)班的人數(shù)分別是m,n,若一?荚嚁(shù)學平均分分別是a,b,則這兩個班的數(shù)學平均分為;
④如果平面外的一條直線上有兩個點到這個平面的距離相等,那么這條直線與這個平面的位置關系為平行或相交。
其中真命題的序號是__________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com