【題目】已知函數(shù).
(1)證明:當(dāng)時,函數(shù)有唯一的極值點;
(2)設(shè)為正整數(shù),若不等式在內(nèi)恒成立,求的最大值.
【答案】(1)證明見解析(2)2
【解析】
(1)對函數(shù)進(jìn)行求導(dǎo),構(gòu)造函數(shù),對函數(shù)進(jìn)行求導(dǎo)并判斷其單調(diào)性,結(jié)合零點存在性定理,分別求出使和的的取值范圍,從而使命題得證;
(2)當(dāng)時,不等式恒成立等價于對恒成立,令,得,又因為為正整數(shù),所以或2,當(dāng)時,不等式對恒成立,即對恒成立,設(shè),對函數(shù)進(jìn)行求導(dǎo),判斷其單調(diào)性并求在上的最小值,只需求得即可求得的最大值2.
證明:(1)因為函數(shù)的定義域為,
設(shè),則.
①當(dāng)時,因為,所以在內(nèi)單調(diào)遞增,又因為,
,
所以存在,使,對于,都有,對于,都有.
②當(dāng)時,.
綜上可得,,當(dāng)時,,當(dāng).
因此,當(dāng)時,函數(shù)有唯一的極值點.
(2)當(dāng)時,不等式恒成立等價于
對恒成立,
令,得,又因為為正整數(shù),所以或2,
當(dāng)時,不等式對恒成立,
即對恒成立,
設(shè),則.
設(shè),則,因為當(dāng)時,,
所以函數(shù)在上單調(diào)遞增,又因為,
所以當(dāng)時,,即.
令,得,因為,所以當(dāng)時,,
當(dāng)時,,所以,
又因為,所以,因此,當(dāng)時,恒成立.
也就是說當(dāng)時,不等式在內(nèi)恒成立.
故的最大值為2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】猜商品的價格游戲, 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:低了! 則此商品價格所在的區(qū)間是 ( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,經(jīng)過左焦點的最短弦長為3,離心率為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過的直線與軸正半軸交于點,與橢圓交于點,軸,過的另一直線與橢圓交于、兩點,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于曲線,有下述四個結(jié)論:
①曲線C是軸對稱圖形;
②曲線C關(guān)于點中心對稱;
③曲線C上的點到坐標(biāo)原點的距離最小值是;
④曲線C與坐標(biāo)軸圍成的圖形的面積不大于,
其中所有正確結(jié)論的編號是( )
A.①③B.①④C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與拋物線相交于兩點,點是拋物線的準(zhǔn)線與以為直徑的圓的公共點,則下列結(jié)論正確的是( )
A.B.C.D.的面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量y(g)與尺寸x(mm)之間近似滿足關(guān)系式c為大于0的常數(shù)).按照某項指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質(zhì)量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記ξ為取到優(yōu)等品的件數(shù),試求隨機(jī)變量ξ的分布列和期望;
(2)根據(jù)測得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根據(jù)所給統(tǒng)計量,求y關(guān)于x的回歸方程.
附:對于樣本,其回歸直線的斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,若將函數(shù)的圖象縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的,再向右平移個單位長度,得到函數(shù)的圖象,則下列命題正確的是( ).
A.函數(shù)的解析式為
B.函數(shù)的解析式為
C.函數(shù)圖象的一條對稱軸是直線
D.函數(shù)在區(qū)間上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了了解一種新產(chǎn)品的銷售情況,對該產(chǎn)品100天的銷售數(shù)量做調(diào)查,統(tǒng)計數(shù)據(jù)如下圖所示:
銷售數(shù)量(件) | 48 | 49 | 52 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | |
天數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 |
經(jīng)計算,上述樣本的平均值,標(biāo)準(zhǔn)差.
(Ⅰ)求表格中字母的值;
(Ⅱ)為評判該公司的銷售水平,用頻率近似估計概率,從上述100天的銷售業(yè)績中隨機(jī)抽取1天,記當(dāng)天的銷售數(shù)量為,并根據(jù)以下不等式進(jìn)行評判(表示相應(yīng)事件的概率);
①;②;③.
評判規(guī)則是:若同時滿足上述三個不等式,則銷售水平為優(yōu)秀;僅滿足其中兩個,則等級為良好;若僅滿足其中一個,則等級為合格;若全部不滿足,則等級為不合格.試判斷該公司的銷售水平;
(Ⅲ)從上述100天的樣本中隨機(jī)抽取2個,記樣本數(shù)據(jù)落在內(nèi)的數(shù)量為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右焦點分別為、,其短軸的兩個端點分別為,,若;是邊長為2的等邊三角形.
(1)求橢圓的方程;
(2)過點且斜率為的直線交橢圓于,兩點,在軸上是否存在定點,使得直線,的斜率乘積為定值,若存在,求出定點,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com