【題目】如圖,在棱長為1的正方體中,P為線段上的動點,下列說法正確的是(

A.對任意點P,平面

B.三棱錐的體積為

C.線段DP長度的最小值為

D.存在點P,使得DP與平面所成角的大小為

【答案】ABC

【解析】

對四個選項逐一分析,

對于A:平面平面,可得平面;

對于B:三棱錐的高均為1,底面的面積為,根據(jù)錐體體積公式計算即可作出判斷;

對于C:當點P的中點時,DP最小,此時,在中利用勾股定理進行計算可得出DP的最小值;

對于D:設(shè)點P在平面上的投影為點Q,DP與平面所成的角,,,而,所以DP與平面所成角的正弦值的取值范圍是,而,從而作出判斷.

由題可知,正方體的面對角線長度為,

對于A:分別連接、、,易得平面平面,平面,故對任意點P,平面,故正確;

對于B:分別連接,無論點P在哪個位置,三棱錐的高均為1,底面的面積為,所以三棱錐的體積為,故正確;

對于C:線段DP中,當點P的中點時,DP最小,此時,在中,

DP的最小值為,故正確;

對于D:點P在平面上的投影在線段上,設(shè)點P的投影為點Q,則DP與平面所成的角,,,

,所以DP與平面所成角的正弦值的取值范圍是,而

所以不存在點P,使得DP與平面所成角的大小為,故錯誤.

故選:ABC.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,已知,的平分線,且棱錐的三個側(cè)面與底面都成角,求棱錐的側(cè)面積與體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中e是自然對數(shù)的底數(shù),

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),討論函數(shù)零點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點,軸正半軸為極軸建立極坐標系.已知直線的極坐標方程為,曲線的極坐標方程為

1)寫出直線和曲線的直角坐標方程;

2)過動點且平行于的直線交曲線兩點,若,求動點到直線的最近距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的右焦點為,左頂點為,線段的中點為,圓過點,且與交于, 是等腰直角三角形,則圓的標準方程是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,,求的最大值;

2)當時,討論極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數(shù)方程:為參數(shù)),以原點為極點,軸非負半軸為極軸(取相同單位長度)建立極坐標系,圓的極坐標方程為:

1)將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;

2)求圓上的點到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了止損,某地一水果店老板利用抖音直播賣貨,經(jīng)過一段時間對一種水果的銷售情況進行統(tǒng)計,得到天的數(shù)據(jù)如下:

銷售單價(元/

銷售量

1)建立關(guān)于的回歸直線方程;

2)該水果店開展促銷活動,當該水果銷售單價為/時,其銷售量達到,若由回歸直線方程得到的預測數(shù)據(jù)與此次促銷活動的實際數(shù)據(jù)之差的絕對值不超過,則認為所得到的回歸直線方程是理想的,試問:(1)中得到的回歸直線方程是否理想?

3)根據(jù)(1)的結(jié)果,若該水果成本是/,銷售單價為何值時(銷售單價不超過/),該水果店利潤的預計值最大?

參考公式:回歸直線方程,其中.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將數(shù)字1,2,3,4,5這五個數(shù)隨機排成一列組成一個數(shù)列,則該數(shù)列為先減后增數(shù)列的概率為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案