【題目】在平面直角坐標(biāo)系xoy中,已知直線l:x+y+a=0與點A(0,2),若直線l上存在點M滿足|MA|2+|MO|2=10(O為坐標(biāo)原點),則實數(shù)a的取值范圍是(
A.(﹣ ﹣1, ﹣1)
B.[﹣ ﹣1, ﹣1]
C.(﹣2 ﹣1,2 ﹣1)
D.[﹣2 ﹣1,2 ﹣1]

【答案】D
【解析】解:設(shè)M(x,﹣x﹣a),
∵直線l:x+y+a=0,點A(0,2),直線l上存在點M,滿足|MA|2+|MO|2=10,
∴x2+(x+a)2+x2+(﹣x﹣a﹣2)2=10,
整理,得4x2+2(2a+2)x+a2+(a+2)2﹣10=0①,
∵直線l上存在點M,滿足|MA|2+|MO|2=10,
∴方程①有解,
∴△=4(2a+2)2﹣16[a2+(a+2)2﹣10]≥0,
解得:﹣2 ﹣1≤a≤2 ﹣1,
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)及函數(shù)(a,b,c∈R),若a>b>ca+b+c=0.

(1)證明:f(x)的圖像與g(x)的圖像一定有兩個交點;

(2)請用反證法證明:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的維修費用(萬元)有如下統(tǒng)計資料:

/

2

3

4

5

6

/萬元

若由資料知 呈線性相關(guān)關(guān)系,試求:

1)回歸直線方程;

2)估計使用年限為10年時,維修費用約是多少?

參考公式:回歸直線方程: .其中

(注: )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是______(寫出所有正確結(jié)論的序號)

①對任意的x∈(-∞,1),都有f(x)>0;

②存在x∈R,使ax,bx,cx不能構(gòu)成一個三角形的三條邊長;

③若△ABC是頂角為120°的等腰三角形,則存在x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題中真命題的個數(shù)是(
①“x=1”是“x2﹣3x+2=0”的充分不必要條件
②命題“x∈R,sinx≤1”的否定是“x∈R,sinx>1”
③“若am2<bm2 , 則a<b”的逆命題為真命題
④命題p;x∈[1,+∞),lgx≥0,命題q:x∈R,x2+x+1<0,則p∨q為真命題.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(m+x)(1+x)3的展開式中x的奇數(shù)次冪項的系數(shù)之和為16,則 xmdx=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱柱的底面ABCD為矩形,AB=1,AD=2,,,則的長為( )

A. B.  C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求曲線處的切線方程;

(2)若上單調(diào)遞增,求實數(shù)的取值范圍;

(3)當(dāng)時,求證:對于任意的 ,均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù), 為常數(shù).

(1)確定的值;

(2)求證: 上的增函數(shù);

(3)若對于區(qū)間上的每一個值,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案