【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.

求橢圓的方程;

是橢圓的左頂點,經(jīng)過左焦點的直線與橢圓交于,兩點,求的面積之差的絕對值的最大值.為坐標原點

【答案】的最大值為.

【解析】

試題分析:首先由離心率的概念可得,然后由長軸長可得的值,進而可得出所求的結果;首先的面積為,的面積為,并分兩類討論:直線斜率不存在和直線斜率存在,分別聯(lián)立直線與橢圓的方程并表達出,然后結合基本不等式求解其最大值即可得出所求的結果.

試題解析:由題意得,又,則,所以.

,故橢圓的方程為.

的面積為的面積為.

當直線斜率不存在時,直線方程為,此時不妨設,,,面積相等,.

當直線斜率存在時,設直線方程為,設,,

和橢圓方程聯(lián)立得,消掉.

顯然,方程有根,且.

此時.

因為,所以上式時等號成立.

所以的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面與平面垂直,是正方形,在直角梯形中,,且,為線段的中點.

(1)求證:平面;

(2)求證:平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于某設備的使用年限與所支出的維修費用萬元,有如下統(tǒng)計資料:

呈線性相關關系,試求:

1線性回歸方程的回歸系數(shù);

2估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的離心率且橢圓經(jīng)過點,直線與橢圓交于不同的兩點

(1)求橢圓的方程;

(2)若的面積為1(為坐標原點),求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法:①球的半徑是球面上任意一點與球心的連線;②球的直徑是球面上任意兩點的連線;③用一個平面截一個球面,得到的是一個圓;④球常用表示球心的字母表示.

其中說法正確的是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場有獎銷售中,購滿100元商品得1張獎券,多購多得,1000張獎券為一個開獎單位,設特等獎1個,一等獎10個,二等獎50個.設1張獎券中特等獎、一等獎、二等獎的事件分別為A、B、C,求:

1PA,PB,PC;

21張獎券的中獎概率;

31張獎券不中特等獎且不中一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:存在實數(shù)m,使方程x2+mx+1=0有兩個不等的負根;命題q:存在實數(shù)m,使方程4x2+4m-2x+1=0無實根.若“p或q”為真,“p且q”為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知甲、乙兩地相距為千米,汽車從甲地勻速行駛到乙地,速度每小時不超過千米.已知汽車每小時的運輸成本(單位:元)由可變部分和固定部分組成:固定部分為元,可變部分與速度(單位; )的平方成正比,且比例系數(shù)為.

(1)求汽車全程的運輸成本(單位:元)關于速度(單位; )的函數(shù)解析式;

(2)為了全程的運輸成本最小,汽車應該以多大的速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在坐標原點,焦點在軸上的橢圓,離心率為且過點,過定點的動直線與該橢圓相交于兩點.

1若線段中點的橫坐標是,求直線的方程;

2軸上是否存在點,使為常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案