【題目】精準扶貧點用2400元的資金為貧困戶購買良種羊羔,共有肉用山羊、毛用綿羊、產(chǎn)奶山羊三種羊羔,價格均為每只300元,若要求每種羊羔至少買1只,則所有可能的購買方案總數(shù)為( )

A.12B.14C.21D.18

【答案】C

【解析】

由于每只羊羔的價格均為300元,則共有8個購買羊羔的指標,即將問題轉化為各種羊的購買指標分別是多少的問題,轉化為隔板法處理.

由于每只羊羔的價格均為300元,則共有8個購買羊羔的指標,

可以看成8個無差別的小球,三種不同的羊羔可以看成三個編號1,2,3的盒子,

則問題轉化為把8個無差別的小球裝入3個不同的盒子中,每個盒子至少裝一個小球.

用隔板法,8個小球共有7個空,插2個隔板,共有種不同的購買方案,

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】過橢圓的左頂點斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.

1)求橢圓的離心率;

2)設動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中m為常數(shù),且是函數(shù)的極值點.

(Ⅰ)求m的值;

(Ⅰ)若上恒成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正四棱錐的底面邊長為,側棱,E為側棱PB上一點且,在內(nèi)(包括邊界)任意取一點F,則的取值范圍為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)),曲線上異于原點的兩點所對應的參數(shù)分別為.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)當時,直線平分曲線,求的值;

2)當時,若,直線被曲線截得的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點,.

1)求證:平面;

2)若異面直線所成角為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年春節(jié),一場突如其來的新型冠狀病毒感染的肺炎疫情,牽動著我們每個人的心,嚴重擾亂了大家的正常生活,在全國人民的共同努力下,疫情得到了有效的控制.已知某市A,B,C三個小區(qū)的志愿者人數(shù)分別為60,40,20,現(xiàn)采用分層抽樣的方法從這120名志愿者中隨機抽取6人去支援夕陽紅敬老院.若再從這6人中隨機抽取2名作為負責人,則這2名志愿者來自不同小區(qū)的概率是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求f(x)的最大值;

2)設函數(shù),若對任意實數(shù),當時,函數(shù)的最大值為,求a的取值范圍;

3)若數(shù)列的各項均為正數(shù),,.求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,判斷函數(shù)的單調性;

(2)當有兩個極值點時,若的極大值小于整數(shù),求的最小值.

查看答案和解析>>

同步練習冊答案