【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)設(shè),對(duì)任意,都有,求實(shí)數(shù)的取值范圍.

【答案】(1)無極大值;(2).

【解析】試題分析:

(1) 當(dāng)時(shí), ,定義域?yàn)?/span>, ,結(jié)合函數(shù)的單調(diào)性可得,函數(shù)沒有極大值.

(2) 由已知,構(gòu)造函數(shù),則上單調(diào)遞減,分類討論可得:

①當(dāng)時(shí), .

②當(dāng)時(shí), ,

綜上,由①②得: .

試題解析:

(1)當(dāng)時(shí), ,定義域?yàn)?/span>, ,

當(dāng)時(shí), 單調(diào)遞減,

當(dāng)時(shí), 單調(diào)遞增,

的遞減區(qū)間是,遞增區(qū)間是.

無極大值.

2)由已知,

設(shè),則上單調(diào)遞減,

當(dāng)時(shí), ,

所以,

整理:

設(shè),則上恒成立,

所以上單調(diào)遞增,所以最大值是.

當(dāng)時(shí), ,

所以,

整理:

設(shè),則上恒成立,

所以上單調(diào)遞增,所以最大值是,

綜上,由①②得: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義運(yùn)算: ;,例如23=3,則下列等式不能成立的是(
A.ab=ba
B.(ab)c=a(bc)
C.(ab)2=a2b2
D.c(ab)=(ca)(cb)(c>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3﹣3ax+b(a>0)的極大值為6,極小值為2,則f(x)的減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)當(dāng)a=0時(shí),求f(x)的極值.
(2)當(dāng)a≠0時(shí),若f(x)是減函數(shù),求a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c均大于1,且logaclogbc=4,則下列各式中,一定正確的是(
A.ac≥b
B.ab≥c
C.bc≥a
D.ab≤c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期為π,且f( )=
(1)求ω和φ的值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在[0, ]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3﹣6x2+1,若f(x)存在唯一的零點(diǎn)x0 , 且x0>0,則a的取值范圍是(
A.(﹣∞,﹣4)
B.(4,+∞)
C.(﹣∞,﹣4
D.(4 ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在信息時(shí)代的今天,隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式,某機(jī)構(gòu)對(duì)“使用微

信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了人,他們年齡的頻數(shù)分布及對(duì) “使用微信交流”贊成的人數(shù)如

下表:(注:年齡單位:歲)

年齡

頻數(shù)

贊成人數(shù)

(1))若以“年齡歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并通過計(jì)算判斷是否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“使用微信交流的態(tài)度與人的年齡有關(guān)”?

年齡不低于歲的人數(shù)

年齡低于歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(2))若從年齡在, 的別調(diào)查的人中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的人中贊成“使用微信交流”的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

附:參考數(shù)據(jù)如下:

參考公式: ,其中.

查看答案和解析>>

同步練習(xí)冊答案