【題目】已知函數(shù),其中

(1)當(dāng)時,寫出函數(shù)的單調(diào)區(qū)間;(直接寫出答案,不必寫出證明過程)

(2)當(dāng)時,求函數(shù)的零點;

(3)當(dāng)時,求函數(shù)上的最小值.

【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2),.(3)

【解析】

1)因為,當(dāng)時,,畫出其函數(shù)圖象,即可求得答案;

2)當(dāng)時,,分別討論時函數(shù)的零點,即可求得函數(shù)的零點;

3 化簡,分別討論,函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)最小值;

(1)當(dāng)時,

畫出圖象

根據(jù)圖象可得:函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

(2)當(dāng)時,,

①當(dāng)時,令,即,

此方程,無實數(shù)解.

②當(dāng)時,令,即,解得;

由①②,得的零點為,

(3)

當(dāng),即時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

當(dāng)時,函數(shù)取到最小值,且

當(dāng),即時,

函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

故當(dāng)時,函數(shù)取到最小值,且

綜上所述,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)4sinxcos(x)+1.

(1)f()的值;

(2)f(x)的最小正周期;

(3)已知 ,且,求cos(2α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游景區(qū)的景點處和處之間有兩種到達(dá)方式,一種是沿直線步行,另一種是沿索道乘坐纜車,現(xiàn)有一名游客從處出發(fā),以的速度勻速步行,后到達(dá)處,在處停留后,再乘坐纜車回到.假設(shè)纜車勻速直線運動的速度為.

1)求該游客離景點的距離關(guān)于出發(fā)后的時間的函數(shù)解析式,并指出該函數(shù)的定義域;

2)做出(1)中函數(shù)的圖象,并求該游客離景點的距離不小于的總時長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】0123456可以組成多少個沒有重復(fù)數(shù)字的

1)五位數(shù);

2)五位偶數(shù);

3)能被5整除的五位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程是(θ為參數(shù)).以坐標(biāo)原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:

(1)求曲線C的極坐標(biāo)方程;

(2)設(shè)直線θ=與直線l交于點M,與曲線C交于P,Q兩點,已知|OM||OP||OQ)=10,求t的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某工廠生產(chǎn)的一種產(chǎn)品的尺寸是否合格,現(xiàn)從500件產(chǎn)品中抽出10件進(jìn)行檢驗先將500件產(chǎn)品編號為000,001002,499,在隨機數(shù)表中任選一個數(shù)開始,例如選出第6行第8列的數(shù)4開始向右讀為了便于說明,下面摘取了隨機數(shù)表,附表1的第6行至第8,即第一個號碼為439,則選出的第4個號碼是(

162277943949544354821737932378

844217533157245506887704744767

630163785916955567199810507175

A.548B.443C.379D.217

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(1,2)是函數(shù)的圖象上一點,數(shù)列的前項和是.

(1)求數(shù)列的通項公式;

(2)若,求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)上的單調(diào)性;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐的三條側(cè)棱兩兩垂直,,分別是棱的中點.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案