間的“距離”。若向量、滿足:①;②;③對任意的則                  (    )

         A.       B.     C.     D.

C


解析:

得,,則,化簡可得,,,,,即,,

,。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有變換公式T:
4
5
x+
3
5
y=x′
3
5
x-
4
5
y=y′
可把平面直角坐標(biāo)系上的一點P(x,y)變換到這一平面上的一點P′(x′,y′).
(1)若橢圓C的中心為坐標(biāo)原點,焦點在x軸上,且焦距為2
2
,長軸頂點和短軸頂點間的距離為2.求該橢圓C的標(biāo)準(zhǔn)方程,并求出其兩個焦點F1、F2經(jīng)變換公式T變換后得到的點F1和F2的坐標(biāo);
(2)若曲線M上一點P經(jīng)變換公式T變換后得到的點P'與點P重合,則稱點P是曲線M在變換T下的不動點.求(1)中的橢圓C在變換T下的所有不動點的坐標(biāo);
(3)在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換T下的不動點的存在情況和個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

d(
a
,
b
)=|
a
-
b
|
為兩個向量
a
、
b
間的“距離”.若向量
a
b
滿足:①|
b
|=1
;②
a
b
;③對任意的t∈R,恒有d(
a
,t
b
)≥d(
a
,
b
)
則( 。
A、
a
b
B、
a
⊥(
a
-
b
)
C、
b
⊥(
a
-
b
)
D、(
a
+
b
)⊥(
a
-
b
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義變換T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
可把平面直角坐標(biāo)系上的點P(x,y)變換到這一平面上的點P′(x′,y′).特別地,若曲線M上一點P經(jīng)變換公式T變換后得到的點P'與點P重合,則稱點P是曲線M在變換T下的不動點.
(1)若橢圓C的中心為坐標(biāo)原點,焦點在x軸上,且焦距為2
2
,長軸頂點和短軸頂點間的距離為2.求該橢圓C的標(biāo)準(zhǔn)方程.并求出當(dāng)θ=arctan
3
4
時,其兩個焦點F1、F2經(jīng)變換公式T變換后得到的點F1和F2的坐標(biāo);
(2)當(dāng)θ=arctan
3
4
時,求(1)中的橢圓C在變換T下的所有不動點的坐標(biāo);
(3)試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的雙曲線在變換T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
θ≠
2
,k∈Z)下的不動點的存在情況和個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

定義變換可把平面直角坐標(biāo)系上的點變換到這一平面上的點.特別地,若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.

(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時,其兩個焦點、經(jīng)變換公式變換后得到的點的坐標(biāo);

(2)當(dāng)時,求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

(3)試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的雙曲線在變換

,)下的不動點的存在情況和個數(shù).

 

查看答案和解析>>

同步練習(xí)冊答案