【題目】在平面直角坐標(biāo)系中,直線與拋物線交于M,拋物線C的焦點(diǎn)為F,且.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)點(diǎn)Q是拋物線C上的動(dòng)點(diǎn),點(diǎn)D,E在y軸上,圓內(nèi)切于三角形,求三角形的面積的最小值.
【答案】(Ⅰ)(Ⅱ)8
【解析】
(Ⅰ)根據(jù)拋物線的定義得到點(diǎn)的坐標(biāo),將其代入拋物線方程即可得到結(jié)果;
(Ⅱ)設(shè),,且,利用直線與圓相切可得,同理可得,所以,是方程的兩根.利用根與系數(shù)的關(guān)系求出,再根據(jù)三角形面積公式與基本不等式可得答案.
(Ⅰ)因?yàn)橹本與拋物線交于M,且.
根據(jù)拋物線的定義可知,,所以,所以,
所以,因?yàn)?/span>,所以解得,
∴拋物線方程為.
(Ⅱ)設(shè),,且,
∴直線的方程為,即,
由直線與圓相切,
得,注意到,
化簡(jiǎn)得,
同理得
所以,是方程的兩根,
所以,,
所以,
∴(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)
因此三角形的面積的最小值為8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)零點(diǎn)的個(gè)數(shù);
(2)若函數(shù)存在兩個(gè)零點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy上取兩個(gè)定點(diǎn)A1(,0),A2(,0),再取兩個(gè)動(dòng)點(diǎn)N1(0,m),N2(0,n),且mn=2.
(1)求直線A1N1與A2N2交點(diǎn)M的軌跡C的方程;
(2)過R(3,0)的直線與軌跡C交于P,Q,過P作PN⊥x軸且與軌跡C交于另一點(diǎn)N,F為軌跡C的右焦點(diǎn),若(λ>1),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),,C的離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知不經(jīng)過點(diǎn)A的直線交橢圓C于M,N兩點(diǎn),線段MN的中點(diǎn)為B,若,求證:直線l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過去五年,我國(guó)的扶貧工作進(jìn)入了“精準(zhǔn)扶貧”階段.目前“精準(zhǔn)扶貧”覆蓋了全部貧困人口,東部幫西部,全國(guó)一盤棋的扶貧格局逐漸形成.到2020年底全國(guó)830個(gè)貧困縣都將脫貧摘帽,最后4335萬(wàn)貧困人口將全部脫貧,這將超過全球其他國(guó)家過去30年脫貧人口總和.2020年是我國(guó)打贏脫貧攻堅(jiān)戰(zhàn)收官之年,越是到關(guān)鍵時(shí)刻,更應(yīng)該強(qiáng)調(diào)“精準(zhǔn)”.為落實(shí)“精準(zhǔn)扶貧”政策,某扶貧小組,為一“對(duì)點(diǎn)幫扶”農(nóng)戶引種了一種新的經(jīng)濟(jì)農(nóng)作物,并指導(dǎo)該農(nóng)戶于2020年初開始種植.已知該經(jīng)濟(jì)農(nóng)作物每年每畝的種植成本為1000元,根據(jù)前期各方面調(diào)查發(fā)現(xiàn),該經(jīng)濟(jì)農(nóng)作物的市場(chǎng)價(jià)格和畝產(chǎn)量均具有隨機(jī)性,且兩者互不影響,其具體情況如下表:
該經(jīng)濟(jì)農(nóng)作物畝產(chǎn)量(kg) | 該經(jīng)濟(jì)農(nóng)作物市場(chǎng)價(jià)格(元/kg) | |||||
概率 | 概率 |
(1)設(shè)2020年該農(nóng)戶種植該經(jīng)濟(jì)農(nóng)作物一畝的純收入為X元,求X的分布列;
(2)若該農(nóng)戶從2020年開始,連續(xù)三年種植該經(jīng)濟(jì)農(nóng)作物,假設(shè)三年內(nèi)各方面條件基本不變,求這三年中該農(nóng)戶種植該經(jīng)濟(jì)農(nóng)作物一畝至少有兩年的純收入不少于16000元的概率;
(3)2020年全國(guó)脫貧標(biāo)準(zhǔn)約為人均純收入4000元.假設(shè)該農(nóng)戶是一個(gè)四口之家,且該農(nóng)戶在2020年的家庭所有支出與其他收入正好相抵,能否憑這一畝經(jīng)濟(jì)農(nóng)作物的純收入,預(yù)測(cè)該農(nóng)戶在2020年底可以脫貧?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(s為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,,直線與曲線C交于A,B兩點(diǎn).
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)P的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面為正方形,且底面,過的平面與側(cè)面的交線為,且滿足(表示的面積).
(1)證明: 平面;
(2)當(dāng)時(shí),求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中k∈R.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)k∈[1,2]時(shí),求函數(shù)在[0,k]上的最大值的表達(dá)式,并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,,,給出以下四個(gè)命題:①為偶函數(shù);②為偶函數(shù);③的最小值為0;④有兩個(gè)零點(diǎn).其中真命題的是( ).
A.②④B.①③C.①③④D.①④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com