【題目】寫出與α=-1910°終邊相同的角的集合,并把集合中適合不等式-720°≤β<360°的元素β寫出來.
【答案】{β|β=k·360°-1 910°,k∈Z};元素β見解析
【解析】
把α=-1 910°加上可得與α=-1 910°終邊相同的角的集合,分別取k=4,5,6,求得適合不等式-720°≤β<360°的元素β.
與α=-1 910°終邊相同的角的集合為{β|β=k·360°-1910°,k∈Z}.
∵-720°≤β<360°,即-720°≤k·360°-1 910°<360°(k∈Z),∴ (k∈Z),故取k=4,5,6.
k=4時(shí),β=4×360°-1910°=-470°;
k=5時(shí),β=5×360°-1910°=-110°;
k=6時(shí),β=6×360°-1910°=250°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次文藝匯演,要將A、B、C、D、E、F這六個(gè)不同節(jié)目編排成節(jié)目單,如下表:
如果A、B兩個(gè)節(jié)目要相鄰,且都不排在第3號(hào)位置,則節(jié)目單上不同的排序方式有( 。┓N
A. 192 B. 144 C. 96 D. 72
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月,來自“一帶一路”沿線的國青年評選出了中國的“新四大發(fā)明”:高鐵、掃碼支付、共享單車和網(wǎng)購.為發(fā)展業(yè)務(wù),某調(diào)研組對兩個(gè)公司的掃碼支付準(zhǔn)備從國內(nèi) 個(gè)人口超過萬的超大城市和個(gè)人口低于萬的小城市隨機(jī)抽取若干個(gè)進(jìn)行統(tǒng)計(jì),若一次抽取個(gè)城市,全是小城市的概率為.
(I)求的值;
(Ⅱ)若一次抽取個(gè)城市,則:
①假設(shè)取出小城市的個(gè)數(shù)為,求的分布列和期望;
②取出個(gè)城市是同一類城市求全為超大城市的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】峰谷電是目前在城市居民當(dāng)中開展的一種電價(jià)類別.它是將一天24小時(shí)劃分成兩個(gè)時(shí)間段,把8:00—22:00共14小時(shí)稱為峰段,執(zhí)行峰電價(jià),即電價(jià)上調(diào);22:00—次日8:00共10個(gè)小時(shí)稱為谷段,執(zhí)行谷電價(jià),即電價(jià)下調(diào).為了進(jìn)一步了解民眾對峰谷電價(jià)的使用情況,從某市一小區(qū)隨機(jī)抽取了50 戶住戶進(jìn)行夏季用電情況調(diào)查,各戶月平均用電量以,,,,,(單位:度)分組的頻率分布直方圖如下圖:
若將小區(qū)月平均用電量不低于700度的住戶稱為“大用戶”,月平均用電量低于700度的住戶稱為“一般用戶”.其中,使用峰谷電價(jià)的戶數(shù)如下表:
月平均用電量(度) | ||||||
使用峰谷電價(jià)的戶數(shù) | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估計(jì)所抽取的 50戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)()將“一般用戶”和“大用戶”的戶數(shù)填入下面的列聯(lián)表:
一般用戶 | 大用戶 | |
使用峰谷電價(jià)的用戶 | ||
不使用峰谷電價(jià)的用戶 |
()根據(jù)()中的列聯(lián)表,能否有的把握認(rèn)為 “用電量的高低”與“使用峰谷電價(jià)”有關(guān)?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為,且過點(diǎn).直線與交于,兩點(diǎn),點(diǎn)是的左焦點(diǎn).
(1)求橢圓的方程;
(2)若過點(diǎn)且不與軸重合,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, , .
()求證: 平面.
()求二面角的余弦值.
()在線段(含端點(diǎn))上,是否存在一點(diǎn),使得平面,若存在,求出的值;若不存在,請說明理由.
【答案】()見解析;();()存在,
【解析】試題分析:(1)由題意,證明, ,證明面;(2)建立空間直角坐標(biāo)系,求平面和平面的法向量,解得余弦值為;(3)得, ,所以, ,所以存在為中點(diǎn).
試題解析:
()∵, ,∴.
∵,∴,∴, .
∵,且,
、面,∴面.
()知,∴.
∵面, , , 兩兩垂直,以為坐標(biāo)原點(diǎn),
以, , 為, , 軸建系.
設(shè),則, , , , ,
∴, .
設(shè)的一個(gè)法向量為,
∴,取,則.
由于是面的法向量,
則.
∵二面角為銳二面角,∴余弦值為.
()存在點(diǎn).
設(shè), ,
∴, , ,
∴, .
∵面, .
若面,∴,
∴,
∴,∴,∴存在為中點(diǎn).
【題型】解答題
【結(jié)束】
19
【題目】已知函數(shù).
()當(dāng)時(shí),求此函數(shù)對應(yīng)的曲線在處的切線方程.
()求函數(shù)的單調(diào)區(qū)間.
()對,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是直角梯形,其中,,.點(diǎn)是的中點(diǎn),將沿折起如圖,使得平面.點(diǎn)、分別是線段、的中點(diǎn).
(1)求證:;
(2)求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) .
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com