已知函數(shù)滿足:),
(1)用反證法證明:不可能為正比例函數(shù);
(2)若,求的值,并用數(shù)學歸納法證明:對任意的,均有:.
(1)主要是考查了反證法的運用,先反設,在推理論證得到矛盾,得出結論。
(2)運用數(shù)學歸納法的兩步驟來加以證明即可。

試題分析:  解:(1)假設,代入可得:對任意恒成立,故必有,但由題設知,故不可能為正比例函數(shù).  5分
(2)由,可得:,    7分
時:顯然有成立.
假設當時,仍然有成立.則當時,
由原式整理可得:=  .  9分
,故  .  11分
成立.綜上可得:對任意的,均有.  .  12分
點評:主要是考查了反證法以及數(shù)學歸納法的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),若f(a)+f(1)=0,則實數(shù)a的值等于(  )
A.3B.1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

漁場中魚群的最大養(yǎng)殖量是m噸,為保證魚群的生長空間,實際養(yǎng)殖量不能達到最大養(yǎng)殖量,必須留出適當?shù)目臻e量。已知魚群的年增長量y噸和實際養(yǎng)殖量x噸與空閑率乘積成正比,比例系數(shù)為k(k>0).
寫出y關于x的函數(shù)關系式,指出這個函數(shù)的定義域;
求魚群年增長量的最大值;
當魚群的年增長量達到最大值時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=-2alnx(a>0)
(I)求函數(shù)f(x)的單調區(qū)間和最小值.
(II)若方程f(x)=2ax有唯一解,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知f(x)是實數(shù)集上的偶函數(shù),且在區(qū)間上是增函數(shù),則的大小關系是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)當a=-2時,求不等式f(x)<g(x)的解集;
(Ⅱ)設a>-1,且當x∈[,)時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知正項數(shù)列中,,點在拋物線上;數(shù)列中,點在過點(0, 1),以為斜率的直線上。
(1)求數(shù)列的通項公式;
(2)若   , 問是否存在,使成立,若存在,求出值;若不存在,說明理由;
(3)對任意正整數(shù),不等式恒成立,求正數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知符號表示不超過的最大整數(shù),若函數(shù)有且僅有3個零點,則的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于函數(shù)(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案