【題目】已知函數(shù)為奇函數(shù).
(1)求常數(shù)的值;
(2)判斷并用定義法證明函數(shù)的單調性;
(3)函數(shù)的圖象由函數(shù)的圖象先向右平移個單位,再向上平移個單位得到,寫出的一個對稱中心,若,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點分別為、,為橢圓上異于長軸端點的點,且的最大面積為.
(1)求橢圓的標準方程
(2)若直線是過點點的直線,且與橢圓交于不同的點、,是否存在直線使得點、到直線,的距離、,滿足恒成立,若存在,求的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)當時,求函數(shù)的最大值;
(2)令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當,,方程有唯一實數(shù)解,求正數(shù)的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下說法中正確的是______.
①函數(shù)在區(qū)間上單調遞減;
②函數(shù)的圖象過定點;
③若是函數(shù)的零點,且,則;
④方程的解是;
⑤命題“,”的否定是,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù),有下列四個命題:①的值域是;②是奇函數(shù);③在上單調遞增;④方程總有四個不同的解;其中正確的是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設有關于x的一元二次方程.
若a是從0,1,2三個數(shù)中任取的一個數(shù),b是從0,1,2,3四個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
若a是從區(qū)間任取的一個數(shù),b是從區(qū)間任取的一個數(shù),求上述方程有實數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)準備招聘一批大學生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為;(Ⅰ)求該小組中女生的人數(shù);(Ⅱ)假設此項專業(yè)技能測試對該小組的學生而言,每個女生通過的概率均為,每個男生通過的概率均為;現(xiàn)對該小組中男生甲、男生乙和女生丙3個人進行測試,記這3人中通過測試的人數(shù)為隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線的斜率為1的切線方程;
(Ⅱ)當時,求證:;
(Ⅲ)設,記在區(qū)間上的最大值為M(a),當M(a)最小時,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.小華同學利用劉徽的“割圓術”思想在半徑為1的圓內作正邊形求其面積,如圖是其設計的一個程序框圖,則框圖中應填入、輸出的值分別為( )
(參考數(shù)據(jù):)
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com