【題目】已知{an}為等比數(shù)列,a4+a7=2,a5a6=﹣8,則a1+a10=( )
A.7
B.5
C.﹣5
D.﹣7
【答案】D
【解析】解:∵a4+a7=2,由等比數(shù)列的性質(zhì)可得,a5a6=a4a7=﹣8
∴a4=4,a7=﹣2或a4=﹣2,a7=4
當(dāng)a4=4,a7=﹣2時(shí), ,
∴a1=﹣8,a10=1,
∴a1+a10=﹣7
當(dāng)a4=﹣2,a7=4時(shí),q3=﹣2,則a10=﹣8,a1=1
∴a1+a10=﹣7
綜上可得,a1+a10=﹣7
故選D
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等比數(shù)列的通項(xiàng)公式(及其變式)(通項(xiàng)公式:),還要掌握等比數(shù)列的基本性質(zhì)({an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對應(yīng)項(xiàng)成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項(xiàng)不為零的常數(shù)列)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對任意x∈[﹣1,1],不等式﹣4≤x3+3|x﹣a|≤4恒成立,則實(shí)數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[0, ]
D.[0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)M(1,0)和直線x=﹣1上的動(dòng)點(diǎn)N(﹣1,t),線段MN的垂直平分線交直線y=t于點(diǎn)R,設(shè)點(diǎn)R的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線y=kx+b(k≠0)交x軸于點(diǎn)C,交曲線E于不同的兩點(diǎn)A,B,點(diǎn)B關(guān)于x軸的對稱點(diǎn)為點(diǎn)P.點(diǎn)C關(guān)于y軸的對稱點(diǎn)為Q,求證:A,P,Q三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, , , 平面, .設(shè)分別為的中點(diǎn).
(1)求證:平面∥平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.
(1)求二面角的余弦值;
(2)設(shè)是棱上一點(diǎn),是的中點(diǎn),若與平面所成角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進(jìn)16枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計(jì)劃一天購進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)16枝還是17枝?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于實(shí)數(shù)a和b,定義運(yùn)算“*”:a*b= 設(shè)f(x)=(2x﹣1)*(x﹣1),且關(guān)于x的方程為f(x)=m(m∈R)恰有三個(gè)互不相等的實(shí)數(shù)根x1 , x2 , x3 , 則x1x2x3的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com