【題目】在極坐標(biāo)系中,點(diǎn)坐標(biāo)是
,曲線
的方程為
;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,斜率是
的直線
經(jīng)過點(diǎn)
.
(1)寫出直線的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)求證直線和曲線
相交于兩點(diǎn)
、
,并求
的值.
【答案】(1),
;(2)3
【解析】分析:(1)由題意得到直線的參數(shù)方程即可,根據(jù)轉(zhuǎn)化公式可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程.(2)根據(jù)直線的參數(shù)方程中參數(shù)的幾何意義求解可得結(jié)論.
詳解:(1)∵點(diǎn)的直角坐標(biāo)是
,直線
傾斜角是
,
∴直線參數(shù)方程是
,即
,
∴直線的參數(shù)方程為
.
由得,
,
∴,
將代入上式得
,
∴曲線的直角坐標(biāo)方程為
.
(2)將代入
,整理得
,
∵,
∴ 直線的和曲線
相交于兩點(diǎn)
、
,
設(shè)點(diǎn)、
對應(yīng)的參數(shù)分別為
,
則,
∴
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在(﹣2π,2π)上的遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,且f(α)=1,α∈(0, ),則cos(2α+
)=( )
A.
B.
C.﹣
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4一1:幾何證明選講 如圖,C是以AB為直徑的半圓O上的一點(diǎn),過C的直線交直線AB于E,交過A點(diǎn)的切線于D,BC∥OD.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則下列結(jié)論正確的有( )
A. 函數(shù)的最大值為2;
B. 函數(shù)的圖象關(guān)于點(diǎn)
對稱;
C. 函數(shù)的圖象左移
個單位可得函數(shù)
的圖象;
D. 函數(shù)的圖象與函數(shù)
的圖象關(guān)于
軸對稱;
E. 若實(shí)數(shù)使得方程
在
上恰好有三個實(shí)數(shù)解
,
,
,則一定有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)令,可將已知三角函數(shù)關(guān)系
轉(zhuǎn)換成代數(shù)函數(shù)關(guān)系
,試寫出函數(shù)
的解析式及定義域;
(2)求函數(shù)的最大值;
(3)函數(shù)在區(qū)間
內(nèi)是單調(diào)函數(shù)嗎?若是,請指出其單調(diào)性;若不是,請分別指出其單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間(不需要證明).
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求證:
函數(shù)是偶函數(shù);
(2)若對任意的,都有
,求實(shí)數(shù)
的取值范圍;
(3)若函數(shù)有且僅有
個零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,曲線C1: (t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2
cosθ. (Ⅰ)求C2與C3交點(diǎn)的直角坐標(biāo);
(Ⅱ)若C2與C1相交于點(diǎn)A,C3與C1相交于點(diǎn)B,求|AB|的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com