【題目】已知兩直線l1:mx+8y+n=0和l2:2x+my﹣1=0,試確定m,n的值,使
(1)l1與l2相交于點P(m,﹣1);
(2)l1∥l2;
(3)l1⊥l2 , 且l1在y軸上的截距為﹣1.

【答案】
(1)解:將點P(m,﹣1)代入兩直線方程得:m2﹣8+n=0 和 2m﹣m﹣1=0,

解得 m=1,n=7


(2)解:由 l1∥l2 得:m2﹣8×2=0,m=±4,

又兩直線不能重合,所以有 8×(﹣1)﹣mn≠0,對應得 n≠2m,

所以當 m=4,n≠﹣2 或 m=﹣4,n≠2 時,L1∥l2


(3)解:當m=0時直線l1:y=﹣ 和 l2:x= ,此時,l1⊥l2,﹣ =﹣1n=8.

當m≠0時此時兩直線的斜率之積等于 ,顯然 l1與l2不垂直,

所以當m=0,n=8時直線 l1 和 l2垂直,且l1在y軸上的截距為﹣1


【解析】(1)將點P(m,﹣1)代入兩直線方程,解出m和n的值.(2)由 l1∥l2得斜率相等,求出 m 值,再把直線可能重合的情況排除.(3)先檢驗斜率不存在的情況,當斜率存在時,看斜率之積是否等于﹣1,從而得到結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以下關于命題的說法正確的有(選擇所有正確命題的序號).

(1)“若,則函數(shù)在其定義域內(nèi)是減函數(shù)”是真命題;

(2)命題“若,則”的否命題是“若,則”;

(3)命題“若都是偶函數(shù),則也是偶數(shù)”的逆命題為真命題;

(4)命題“若,則”與命題“若,則”等價.

A. (1)(3) B. (2)(3) C. (2)(4) D. (3)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心在直線上,且與直線相切于點.

1求圓方程;

2是否存在過點的直線與圓交于兩點,且的面積是為坐標原點),若存在,求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (a>0且a≠1)是定義在R上的奇函數(shù). (Ⅰ) 求實數(shù)a的值;
(Ⅱ) 證明函數(shù)f(x)在R上是增函數(shù);
(Ⅲ)當x∈[1,+∞)時,mf(x)≤2x﹣2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A,B,C的坐標分別為A(3,0),B(0,3),C(cos α,sin α),α.

(1)||=||,求角α的值;

(2)=-1,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC;
(2)求證:直線PB1⊥平面PAC.
(3)求三棱錐B﹣PAC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的焦距為4,左、右焦點分別為,且與拋物線 的交點所在的直線經(jīng)過.

(Ⅰ)求橢圓的方程;

(Ⅱ)分別過、作平行直線,若直線交于 兩點,與拋物線無公共點,直線交于, 兩點,其中點, 軸上方,求四邊形的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線經(jīng)過點在點處的切線交軸于點,直線經(jīng)過點且垂直于軸.

1)求線段的長;

2)設不經(jīng)過點的動直線于點,交于點,若直線、、的斜率依次成等差數(shù)列,試問: 是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足an+1+﹣1nan=2n﹣1,則{an}的前60項和為( )

A. 3690 B. 3660 C. 1845 D. 1830

查看答案和解析>>

同步練習冊答案