【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sin θ,直線:θ=(ρ>0),A(2,0).
(1)把C1的普通方程化為極坐標(biāo)方程,并求點(diǎn)A到直線的中距離;
(2)設(shè)直線分別交C1,C2于點(diǎn)P,Q,求△APQ的面積.
【答案】(1)ρ=4cos θ.距離為1,(2)
【解析】
(1)先把曲線的參數(shù)方程利用平方法消去參數(shù)化為普通方程,由極坐標(biāo)與直角坐標(biāo)方程的互化公式能求出的極坐標(biāo)方程;(2)設(shè)點(diǎn)的極坐標(biāo)分別為,將代入,得,將代入,得,利用極坐標(biāo)的幾何意義以及三角形面積公式可得結(jié)果.
(1)因?yàn)?/span>C1的普通方程為(x-2)2+y2=4,即x2+y2-4x=0,
所以C1的極坐標(biāo)方程為ρ2-4ρcos θ=0,即ρ=4cos θ.
(2)依題意,設(shè)點(diǎn)P,Q的極坐標(biāo)分別為,.
將θ=代入ρ=4cos θ,得ρ1=2,
將θ=代入ρ=2sin θ,得ρ2=1,
所以|PQ|=|ρ1-ρ2|=2-1.
依題意,點(diǎn)A(2,0)到曲線θ= (ρ>0)的距離d=|OA|sin=1,
所以S△APQ=|PQ|·d=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過(guò)點(diǎn)任作一條直線與圓:相交于兩點(diǎn)A,B.問(wèn):是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋數(shù)學(xué)家秦九韶(約公元1202﹣1261年)給出了求n(n∈N*)次多項(xiàng)式anxn+an﹣1xn﹣1+…+a1x+a0 , 當(dāng)x=x0時(shí)的值的一種簡(jiǎn)捷算法.該算法被后人命名為“秦九韶算法”,例如,可將3次多項(xiàng)式改寫(xiě)為a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后進(jìn)行求值.運(yùn)行如圖所示的程序框圖,能求得多項(xiàng)式( )的值.
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從6雙不同手套中,任取4只,
(1)恰有1雙配對(duì)的取法是多少?
(2)沒(méi)有1雙配對(duì)的取法是多少?
(3)至少有1雙配對(duì)的取法是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次考試中,5名同學(xué)的數(shù)學(xué)、物理成績(jī)?nèi)绫硭荆?/span>
學(xué)生 | A | B | C | D | E |
數(shù)學(xué)(x分) | 89 | 91 | 93 | 95 | 97 |
物理(y分) | 87 | 89 | 89 | 92 | 93 |
(1)根據(jù)表中數(shù)據(jù),求物理分y關(guān)于數(shù)學(xué)分x的回歸方程,并試估計(jì)某同學(xué)數(shù)學(xué)考100分時(shí),他的物理得分;
(2)要從4名數(shù)學(xué)成績(jī)?cè)?/span>90分以上的同學(xué)中選出2名參加一項(xiàng)活動(dòng),以X表示選中的同學(xué)中物理成績(jī)高于90分的人數(shù),試解決下列問(wèn)題:
①求至少選中1名物理成績(jī)?cè)?/span>90分以下的同學(xué)的概率;
②求隨機(jī)變變量X的分布列及數(shù)學(xué)期望.
附:回歸方程:中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)準(zhǔn)備在開(kāi)學(xué)時(shí)舉行一次高三年級(jí)優(yōu)秀學(xué)生座談會(huì),擬請(qǐng)20名來(lái)自本校高三(1)(2)(3)(4)班的學(xué)生參加,各班邀請(qǐng)的學(xué)生數(shù)如下表所示;
班級(jí) | 高三(1) | 高三(2) | 高三(3) | 高三(4) |
人數(shù) | 4 | 6 | 4 | 6 |
(1)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個(gè)均不屬于同一班級(jí)的概率;
(2)從這20名學(xué)生中隨機(jī)選出3 名學(xué)生發(fā)言,設(shè)來(lái)自高三(3)的學(xué)生數(shù)為,求隨機(jī)變量的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,a,b,c分別為∠A,∠B,∠C的對(duì)邊,且滿(mǎn)足(2c﹣b)tanB=btanA.
(1)求A的大;
(2)求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有5名男生、2名女生站成一排照相,
(1)兩女生要在兩端,有多少種不同的站法?
(2)兩名女生不相鄰,有多少種不同的站法?
(3)女生甲不在左端,女生乙不在右端,有多少種不同的站法?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com