【題目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1 , 以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2 , 若對(duì)任意x∈(0,1)不等式t<e1+e2恒成立,則t的最大值為(
A.
B.
C.2
D.

【答案】B
【解析】解:在等腰梯形ABCD中,BD2=AD2+AB2﹣2ADABcos∠DAB =1+4﹣2×1×2×(1﹣x)=1+4x,
由雙曲線的定義可得a1= ,c1=1,e1=
由橢圓的定義可得a2= ,c2=x,e2=
則e1+e2= + = + ,
令t= ∈(0, ﹣1),
則e1+e2= (t+ )在(0, ﹣1)上單調(diào)遞減,
所以e1+e2 ×( ﹣1+ )= ,
故選:B.

根據(jù)余弦定理表示出BD,進(jìn)而根據(jù)雙曲線的定義可得到a1的值,再由AB=2c1 , e= 可表示出e1 , 同樣的在橢圓中用c2和a2表示出e2 , 然后利用換元法即可求出e1+e2的取值范圍,即得結(jié)論

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù):①f(x)=3|x| , ②f(x)=x3 , ③f(x)=ln ,④f(x)=x ,⑤f(x)=﹣x2+1中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減函數(shù)為 . (寫出符合要求的所有函數(shù)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l與橢圓 交于兩點(diǎn)A(x1 , y1),B(x2 , y2),橢圓上的點(diǎn)到下焦點(diǎn)距離的最大值、最小值分別為 ,向量 =(ax1 , by1), =(ax2 , by2),且 ,O為坐標(biāo)原點(diǎn). (Ⅰ)求橢圓的方程;
(Ⅱ)判斷△AOB的面積是否為定值,如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a x(a>0且a≠1)的圖象經(jīng)過點(diǎn)(2,
(1)求a的值
(2)比較f(2)與f(b2+2)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},則B∪(UA)=( )
A.{5}
B.{1,2,5}
C.{1,2,3,4,5}
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則它的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ) 計(jì)算:2 ﹣( +lg +( ﹣1)lg1+(lg5)2+lg2lg50
(Ⅱ)已知x +x =3,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,東方百貨超市的一種商品在過去的一個(gè)月內(nèi)(以30天計(jì)算),銷售價(jià)格f(t)與時(shí)間(天)的函數(shù)關(guān)系近似滿足 ,銷售量g(t)與時(shí)間(天)的函數(shù)關(guān)系近似滿足g(t)=
(1)試寫出該商品的日銷售金額W(t)關(guān)于時(shí)間t(1≤t≤30,t∈N)的函數(shù)表達(dá)式;
(2)求該商品的日銷售金額W(t)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 的定義域?yàn)榧? ,函數(shù) 的定義域?yàn)榧? .
(1)若 ,求實(shí)數(shù) 的取值范圍;
(2)若 ,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案