精英家教網 > 高中數學 > 題目詳情

【題目】選用適當的符號填空:

1)若集合,則-4__________B,-3______A A ___________B,B_________________A;

2)若集合,則1__________A,_______________A,_________A;

(3){是菱形}_____________{是平行四邊形};{是等腰三角形}_____________{是等邊三角形}.

【答案】(1),,;(2),,;(3),

【解析】

1)計算,根據集合與集合,元素與集合的關系得到答案.

2)計算,根據元素與集合,集合與集合的關系得到答案.

3)根據菱形,平行四邊形,等腰三角形,等邊三角形的關系得到答案.

1

.,

2,故,

3){是菱形}{是平行四邊形};{是等腰三角形}{是等邊三角形}

故答案為:(1),;(2),;(3),

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在用二次法求方程3x+3x-8=0在(1,2)內近似根的過程中,已經得到f1)<0,f1.5)>0f1.25)<0,則方程的根落在區(qū)間( 。

A. B. C. D. 不能確定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,(為常數),.曲線在點處的切線與軸平行

(1)的值;

(2)的單調區(qū)間和最小值;

(3)對任意恒成立,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】)設 ,,若 的必要不充分條件,求實數的取值范圍

)已知命題方程表示焦點在軸上的橢圓;命題:雙曲線的離心率.若 有且只有一個為真命題,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,橢圓 的離心率為,過橢圓右焦點作兩條互相垂直的弦.當直線的斜率為時,.

(1)求橢圓的方程;

(2)求由,,四點構成的四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司有一批專業(yè)技術人員,對他們進行年齡狀況和接受教育程度(學歷)的調查,其結果(人數分布)如表:

(1)用分層抽樣的方法在歲年齡段的專業(yè)技術人員中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取人,求至少有人的學歷為研究生的概率;

(2)在這個公司的專業(yè)技術人員中按年齡狀況用分層抽樣的方法抽取個人,其中歲以下人,歲以上人,再從這個人中隨機抽取出人,此人的年齡為歲以上的概率為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機抽取名中學生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號

分組

頻數

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請先求出頻率分布表中位置的相應數據,再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第組中用分層抽樣抽取名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試;

(3)在(2)的前提下,學校決定在名學生中隨機抽取名學生接受考官進行面試,求:第組至少有一名學生被考官面試的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】五一勞動節(jié)放假,某商場進行一次大型抽獎活動.在一個抽獎盒中放有紅、橙、黃、綠、藍、紫的小球各2個,分別對應1分、2分、3分、4分、5分、6分.從袋中任取3個小球,按3個小球中最大得分的8倍計分,計分在20分到35分之間即為中獎.每個小球被取出的可能性都相等,用表示取出的3個小球中最大得分,求:

(1)取出的3個小球顏色互不相同的概率;

(2)隨機變量的概率分布和數學期望;

(3)求某人抽獎一次,中獎的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小李大學畢業(yè)后選擇自主創(chuàng)業(yè),開發(fā)了一種新型電子產品.2019年9月1日投入市場銷售,在9月份的30天內,前20天每件售價(元)與時間(天,)滿足一次函數關系,其中第一天每件售價為63元,第10天每件售價為90元;后10天每件售價均為120元.已知日銷售量(件)與時間(天)之間的函數關系是.

(1)寫出該電子產品9月份每件售價(元)與時間(天)的函數關系式;

(2)9月份哪一天的日銷售金額最大?并求出最大日銷售金額.(日銷售金額=每件售價日銷售量).

查看答案和解析>>

同步練習冊答案