【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù))
(1)設(shè)過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)相切于點(diǎn),求的值;
(2)函數(shù)的的導(dǎo)函數(shù)為,若在上恰有兩個(gè)零點(diǎn),求的取值范圍.
【答案】(1);(2).
【解析】【試題分析】(1)依據(jù)題設(shè)條件導(dǎo)數(shù)的幾何意義分析求解;(2)先對(duì)函數(shù)令求導(dǎo),再運(yùn)用導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系判斷單調(diào)性,然后求出最小值,建立不等式進(jìn)行分析求解:
(1)因?yàn)楹瘮?shù),所以,
故直線(xiàn)的斜率為,
點(diǎn)的切線(xiàn)的方程為,
因直線(xiàn)過(guò),
所以,
即
解之得,
(2)令,
所以,
設(shè),
則,
因?yàn)楹瘮?shù)在上單增,
若在上恰有兩個(gè)零點(diǎn),
則在有一個(gè)零點(diǎn),
所以,
∴在上遞減,在上遞增,
所以在上有最小值,
因?yàn)?/span>(),
設(shè)(),則,
令,得,
當(dāng)時(shí), , 遞增,
當(dāng)時(shí), , 遞減,
所以,
∴恒成立,
若有兩個(gè)零點(diǎn),則有, , ,
由, ,得,
綜上,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了解下屬某部門(mén)對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪(fǎng)問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門(mén)的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50],[50,60],…,[80,90],[90,100]
(1)求頻率分布圖中a的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門(mén)評(píng)分不低于80的概率;
(3)從評(píng)分在[40,60]的受訪(fǎng)職工中,隨機(jī)抽取2人,求此2人評(píng)分都在[40,50]的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且b2+c2=a2+bc,求:
(1)2sinBcosC﹣sin(B﹣C)的值;
(2)若a=2,求△ABC周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,過(guò)分別作曲線(xiàn)與的切線(xiàn),且與關(guān)于軸對(duì)稱(chēng),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線(xiàn)l的方程為(a+1)x+y+2-a=0(a∈R).
(Ⅰ)若直線(xiàn)l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若直線(xiàn)l與兩坐標(biāo)軸圍成的三角形面積等于2,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內(nèi)的一點(diǎn),且AP= ,若 =λ +μ ,(λ,μ∈R),則λ+ μ的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義在區(qū)間上的函數(shù)的圖象為, 、,且為圖象上的任意一點(diǎn), 為坐標(biāo)原點(diǎn),當(dāng)實(shí)數(shù)滿(mǎn)足時(shí),記向量,若恒成立,則稱(chēng)函數(shù)在區(qū)間上可在標(biāo)準(zhǔn)下線(xiàn)性近似,其中是一個(gè)確定的正數(shù).
(1)設(shè)函數(shù)在區(qū)間上可在標(biāo)準(zhǔn)下線(xiàn)性近似,求的取值范圍;
(2)已知函數(shù)的反函數(shù)為,函數(shù),( ),點(diǎn)、,記直線(xiàn)的斜率為,若,問(wèn):是否存在,使成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且 ,
(1)求角B的大;
(2)若 ,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com