【題目】已知橢圓,右頂點(diǎn)為,右焦點(diǎn)為,為坐標(biāo)原點(diǎn),,橢圓過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn)(在之間),求與面積之比的取值范圍.
【答案】(1);(2)
【解析】
(1)由橢圓過(guò)點(diǎn),及之間的關(guān)系,可得的值,進(jìn)而求出橢圓的方程;
(2)設(shè)直線的方程,與橢圓聯(lián)立由,可得斜率的范圍,求出兩根之和及兩根之積,求出面積之比可得的橫坐標(biāo)之比,代入兩根之和及兩根之積,可得的表達(dá)式,進(jìn)而求出面積之比的范圍.
(1)由,可得,,且過(guò)點(diǎn),則,,故解得:,,
所以橢圓的方程為:;
(2)由題意可知直線的斜率存在,設(shè)的方程為:,設(shè),
將的方程代入,整理可得:,
,可得: * ,
令,且
將代入*可得可得:
所以解得:
所以與面積之比的取值范圍:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自新型冠狀病毒疫情爆發(fā)以來(lái),人們時(shí)刻關(guān)注疫情,特別是治愈率,治愈率累計(jì)治愈人數(shù)/累計(jì)確診人數(shù),治愈率的高低是“戰(zhàn)役”的重要數(shù)據(jù),由于確診和治愈人數(shù)在不斷變化,那么人們就非常關(guān)心第天的治愈率,以此與之前的治愈率比較,來(lái)推斷在這次“戰(zhàn)役”中是否有了更加有效的手段,下面是一段計(jì)算治愈率的程序框圖,請(qǐng)同學(xué)們選出正確的選項(xiàng),分別填入①②兩處,完成程序框圖.( )
:第天新增確診人數(shù);:第天新增治愈人數(shù);:第天治愈率
A.,B.,
C.,D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上除A,B外的一個(gè)動(dòng)點(diǎn),DC垂直于半圓O所在的平面,DC∥EB,DC=EB=1,AB=4.
(1)證明:平面ADE⊥平面ACD;
(2)當(dāng)C點(diǎn)為半圓的中點(diǎn)時(shí),求二面角D﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)又稱(chēng)為小黃車(chē),近年來(lái)逐漸走進(jìn)了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對(duì)共享單車(chē)的使用情況,從該地區(qū)居民中按年齡用隨機(jī)抽樣的方式隨機(jī)抽取了人進(jìn)行問(wèn)卷調(diào)查,得到這人對(duì)共享單車(chē)的評(píng)價(jià)得分統(tǒng)計(jì)填入莖葉圖,如下所示(滿分分):
(1)找出居民問(wèn)卷得分的眾數(shù)和中位數(shù);
(2)請(qǐng)計(jì)算這位居民問(wèn)卷的平均得分;
(3)若在成績(jī)?yōu)?/span>分的居民中隨機(jī)抽取人,求恰有人成績(jī)超過(guò)分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若對(duì)任意的,都有恒成立,求的最小值;
(2)設(shè),若為曲線上的兩個(gè)不同的點(diǎn),滿足,且,使得曲線在點(diǎn)處的切線與直線平行,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與過(guò)點(diǎn)的直線交于兩點(diǎn).
(1)若,求直線的方程;
(2)若,軸,垂足為,探究:以為直徑的圓是否過(guò)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市一中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并據(jù)此判斷甲乙兩位同學(xué)的成績(jī)誰(shuí)更好?
(2)將同學(xué)乙的成績(jī)的頻率分布直方圖補(bǔ)充完整;
(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),設(shè)選出的2個(gè)成績(jī)中含甲的成績(jī)的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的右頂點(diǎn)為,離心率為,點(diǎn)在橢圓上,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求經(jīng)過(guò)點(diǎn),且和軸相切的圓的方程;
(3)若,是橢圓上異于,的兩個(gè)點(diǎn),且,點(diǎn)在直線的上方,試判斷的平分線是否經(jīng)過(guò)軸上的一個(gè)定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)討論函數(shù)在上的單調(diào)性;
(2)若,當(dāng)時(shí),,且有唯一零點(diǎn),證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com