【題目】已知點(diǎn),在圓上任取一點(diǎn)的垂直平分線交于點(diǎn).(如圖).

(1)求點(diǎn)的軌跡方程;

(2)若過(guò)點(diǎn)的動(dòng)直線與(1)中的軌跡相交于兩點(diǎn).問(wèn):平面內(nèi)是否存在異于點(diǎn)的定點(diǎn),使得恒成立?試證明你的結(jié)論.

【答案】(1)

(2)存在,證明見(jiàn)解析

【解析】

1)利用垂直平分線的性質(zhì)可得,從而得到點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓;

2)先考慮當(dāng)直線軸和直線軸的情況得到定點(diǎn);再考慮對(duì)直線的一般情況都有點(diǎn)滿足題意.

(1)依題意得,,

故點(diǎn)的軌跡是以為焦點(diǎn)的橢圓,

,,

因此,所求的軌跡是橢圓.

(2)當(dāng)直線軸時(shí),由知點(diǎn)軸上,可設(shè).

當(dāng)直線軸時(shí),,,由

,或.

因此,若存在異于點(diǎn)的定點(diǎn)滿足題意,則點(diǎn)的坐標(biāo)為.

下面我們來(lái)證明:對(duì)任意直線均有.

當(dāng)直線的斜率不存在時(shí),由上可知,結(jié)論成立.

當(dāng)直線的斜率存在時(shí),可設(shè)直線,.

代入,

由于點(diǎn)在橢圓的內(nèi)部,故判別式.所以

,,,

易知點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為

,

,

所以,

、三點(diǎn)共線,

,

綜上知,存在異于點(diǎn)的定點(diǎn)滿足題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)若曲線與直線交于兩點(diǎn),點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電力公司在工程招標(biāo)中是根據(jù)技術(shù)、商務(wù)、報(bào)價(jià)三項(xiàng)評(píng)分標(biāo)準(zhǔn)進(jìn)行綜合評(píng)分的,按照綜合得分的高低進(jìn)行綜合排序,綜合排序高者中標(biāo).

分值權(quán)重表如下:

總分

技術(shù)

商務(wù)

報(bào)價(jià)

100%

50%

10%

40%

技術(shù)標(biāo)、商務(wù)標(biāo)基本都是由公司的技術(shù)、資質(zhì)、資信等實(shí)力來(lái)決定的.報(bào)價(jià)表則相對(duì)靈活,報(bào)價(jià)標(biāo)的評(píng)分方法是:基準(zhǔn)價(jià)的基準(zhǔn)分是68分,若報(bào)價(jià)每高于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上扣0.8分,最低得分48分;若報(bào)價(jià)每低于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上加0.8分,最高得分為80分.若報(bào)價(jià)低于基準(zhǔn)價(jià)15%以上(不含15%)每再低1%,在80分在基礎(chǔ)上扣0.8分.

在某次招標(biāo)中,若基準(zhǔn)價(jià)為1000(萬(wàn)元).甲、乙兩公司綜合得分如下表:

公司

技術(shù)

商務(wù)

報(bào)價(jià)

80分

90分

A甲分

70分

100分

A乙分

甲公司報(bào)價(jià)為1100(萬(wàn)元),乙公司的報(bào)價(jià)為800(萬(wàn)元)則甲,乙公司的綜合得分,分別是(  )

A. 73,75.4B. 73,80C. 74.6,76D. 74.6,75.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)AB分別是雙曲線的左右頂點(diǎn),設(shè)過(guò)的直線PA,PB與雙曲線分別交于點(diǎn)M,N,直線MNx軸于點(diǎn)Q,過(guò)Q的直線交雙曲線的于S,T兩點(diǎn),且,則的面積( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰直角三角形中,,點(diǎn)在邊上,垂直,如圖①.將沿折起,使到達(dá)的位置,且使平面平面,連接,如圖②.

(Ⅰ)若的中點(diǎn),,求證:;

(Ⅱ)若,當(dāng)三棱錐的體積最大時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C經(jīng)過(guò)A53),B4,4)兩點(diǎn),且圓心在x軸上.

1)求圓C的標(biāo)準(zhǔn)方程;

2)若直線l過(guò)點(diǎn)(52),且被圓C所截得的弦長(zhǎng)為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.

(1)試寫出直線的直角坐標(biāo)方程及曲線的普通方程;

(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是由菱形,平行四邊形和矩形組成的一個(gè)平面圖形,其中,,,將其沿,折起使得重合,如圖2

1)證明:圖2中的平面平面;

2)求圖2中點(diǎn)到平面的距離;

3)求圖2中二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】河北省高考改革后高中學(xué)生實(shí)施選課走班制,若某校學(xué)生選擇物理學(xué)科的人數(shù)為800人,高二期中測(cè)試后,由學(xué)生的物理成績(jī),調(diào)研選課走班制學(xué)生的學(xué)習(xí)情況及效果,為此決定從這800人中抽取人,其頻率分布情況如下:

分?jǐn)?shù)

頻數(shù)

頻率

8

0.08

18

0.18

20

0.2

0.24

15

10

0.10

5

0.05

合計(jì)

1

(1)計(jì)算表格中,,的值;

(2)為了了解成績(jī)?cè)?/span>,分?jǐn)?shù)段學(xué)生的情況,先決定利用分層抽樣的方法從這兩個(gè)分?jǐn)?shù)段中抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人進(jìn)行面談,求2人來(lái)自不同分?jǐn)?shù)段的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案