【題目】為提高城市居民生活幸福感,某城市公交公司大力確保公交車的準(zhǔn)點(diǎn)率,減少居民乘車候車時(shí)間為此,該公司對(duì)某站臺(tái)乘客的候車時(shí)間進(jìn)行統(tǒng)計(jì)乘客候車時(shí)間受公交車準(zhǔn)點(diǎn)率、交通擁堵情況、節(jié)假日人流量增大等情況影響在公交車準(zhǔn)點(diǎn)率正常、交通擁堵情況正常、非節(jié)假日的情況下,乘客候車時(shí)間隨機(jī)變量滿足正態(tài)分布在公交車準(zhǔn)點(diǎn)率正常、交通擁堵情況正常、非節(jié)假日的情況下,調(diào)查了大量乘客的候車時(shí)間,經(jīng)過(guò)統(tǒng)計(jì)得到如圖頻率分布直方圖.

1)在直方圖各組中,以該組區(qū)間的中點(diǎn)值代表該組中的各個(gè)值,試估計(jì)的值;

2)在統(tǒng)計(jì)學(xué)中,發(fā)生概率低于千分之三的事件叫小概率事件,一般認(rèn)為,在正常情況下,一次試驗(yàn)中,小概率事件是不能發(fā)生的在交通擁堵情況正常、非節(jié)假日的某天,隨機(jī)調(diào)查了該站的10名乘客的候車時(shí)間,發(fā)現(xiàn)其中有3名乘客候車時(shí)間超過(guò)15分鐘,試判斷該天公交車準(zhǔn)點(diǎn)率是否正常,說(shuō)明理由.

(參考數(shù)據(jù):,,,

【答案】(1)(2)準(zhǔn)點(diǎn)率正常,詳見(jiàn)解析

【解析】

(1)由頻率分布直方圖結(jié)合均值和方差公式可求出

(2)由正態(tài)分布求得再根據(jù)n次獨(dú)立重復(fù)試驗(yàn)中事件發(fā)生k次的概率公式求有3名乘客候車時(shí)間超過(guò)15分鐘的概率從而得出結(jié)論.

1,

2,

設(shè)3名乘客候車時(shí)間超過(guò)15分鐘的事件為

,

,

準(zhǔn)點(diǎn)率正常

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】n2個(gè)數(shù)排成nn列的一個(gè)數(shù)陣,如圖:該數(shù)陣第一列的n個(gè)數(shù)從上到下構(gòu)成以m為公差的等差數(shù)列,每一行的n個(gè)數(shù)從左到右構(gòu)成以m為公比的等比數(shù)列(其中m0.已知a112,a13a61+1,記這n2個(gè)數(shù)的和為S.下列結(jié)論正確的有(

A.m3B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),其中,,為實(shí)常數(shù)

(1)若時(shí),討論函數(shù)的單調(diào)性;

(2)若時(shí),不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若,當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn)

(1)求橢圓的方程,并求其離心率;

(2)過(guò)點(diǎn)軸的垂線,設(shè)點(diǎn)為第四象限內(nèi)一點(diǎn)且在橢圓上(點(diǎn)不在直線上),點(diǎn)關(guān)于的對(duì)稱點(diǎn)為,直線交于另一點(diǎn).設(shè)為原點(diǎn),判斷直線與直線的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為4,且過(guò)點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為橢圓上一點(diǎn),過(guò)點(diǎn)軸的垂線,垂足為,取點(diǎn),連接,過(guò)點(diǎn)的垂線交軸于點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),作直線,問(wèn)這樣作出的直線是否與橢圓一定有唯一的公共點(diǎn)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由我國(guó)引領(lǐng)的5G時(shí)代已經(jīng)到來(lái),5G的發(fā)展將直接帶動(dòng)包括運(yùn)營(yíng)、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進(jìn)而對(duì)增長(zhǎng)產(chǎn)生直接貢獻(xiàn),并通過(guò)產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動(dòng)國(guó)民經(jīng)濟(jì)各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟(jì)增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對(duì)今后幾年的5G經(jīng)濟(jì)產(chǎn)出所做的預(yù)測(cè).結(jié)合下圖,下列說(shuō)法正確的是(

A.5G的發(fā)展帶動(dòng)今后幾年的總經(jīng)濟(jì)產(chǎn)出逐年增加

B.設(shè)備制造商的經(jīng)濟(jì)產(chǎn)出前期增長(zhǎng)較快,后期放緩

C.設(shè)備制造商在各年的總經(jīng)濟(jì)產(chǎn)出中一直處于領(lǐng)先地位

D.信息服務(wù)商與運(yùn)營(yíng)商的經(jīng)濟(jì)產(chǎn)出的差距有逐步拉大的趨勢(shì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型工廠有6臺(tái)大型機(jī)器,在1個(gè)月中,1臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障的概率為.已知1名工人每月只有維修2臺(tái)機(jī)器的能力(若有2臺(tái)機(jī)器同時(shí)出現(xiàn)故障,工廠只有1名維修工人,則該工人只能逐臺(tái)維修,對(duì)工廠的正常運(yùn)行沒(méi)有任何影響),每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障時(shí)能及時(shí)得到維修,就能使該廠獲得10萬(wàn)元的利潤(rùn),否則將虧損2萬(wàn)元.該工廠每月需支付給每名維修工人1萬(wàn)元的工資.

(1)若每臺(tái)機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時(shí),有工人進(jìn)行維修(例如:3臺(tái)大型機(jī)器出現(xiàn)故障,則至少需要2名維修工人),則稱工廠能正常運(yùn)行.若該廠只有1名維修工人,求工廠每月能正常運(yùn)行的概率;

(2)已知該廠現(xiàn)有2名維修工人.

(。┯浽搹S每月獲利為萬(wàn)元,求的分布列與數(shù)學(xué)期望;

(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問(wèn)該廠是否應(yīng)再招聘1名維修工人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖(1)梯形中,,過(guò),,沿翻折后得圖(2),使得,又點(diǎn)滿足,連接,且.

1)證明:平面

2)求三棱錐外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形ABCDBDEF均為菱形,,且

求證:平面BDEF;

求直線AD與平面ABF所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案