【題目】1是由矩形ADEB,RtABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BEBF重合,連結(jié)DG,如圖2.

1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC⊥平面BCGE;

2)求圖2中的二面角BCGA的大小.

【答案】(1)見(jiàn)詳解;(2) .

【解析】

(1)因?yàn)檎奂埡驼澈喜桓淖兙匦?/span>,和菱形內(nèi)部的夾角,所以依然成立,又因粘在一起,所以得證.因?yàn)?/span>是平面垂線(xiàn),所以易證.(2)在圖中找到對(duì)應(yīng)的平面角,再求此平面角即可.于是考慮關(guān)于的垂線(xiàn),發(fā)現(xiàn)此垂足與的連線(xiàn)也垂直于.按照此思路即證.

(1)證:,,又因?yàn)?/span>粘在一起.

,A,CG,D四點(diǎn)共面.

.

平面BCGE,平面ABC,平面ABC平面BCGE,得證.

(2)過(guò)B延長(zhǎng)線(xiàn)于H,連結(jié)AH,因?yàn)?/span>AB平面BCGE,所以

而又,故平面,所以.又因?yàn)?/span>所以是二面角的平面角,而在,又因?yàn)?/span>,所以.

而在,,即二面角的度數(shù)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201913日嫦娥四號(hào)探測(cè)器成功實(shí)現(xiàn)人類(lèi)歷史上首次月球背面軟著陸,我國(guó)航天事業(yè)取得又一重大成就,實(shí)現(xiàn)月球背面軟著陸需要解決的一個(gè)關(guān)鍵技術(shù)問(wèn)題是地面與探測(cè)器的通訊聯(lián)系.為解決這個(gè)問(wèn)題,發(fā)射了嫦娥四號(hào)中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點(diǎn)的軌道運(yùn)行.點(diǎn)是平衡點(diǎn),位于地月連線(xiàn)的延長(zhǎng)線(xiàn)上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R,點(diǎn)到月球的距離為r,根據(jù)牛頓運(yùn)動(dòng)定律和萬(wàn)有引力定律,r滿(mǎn)足方程:

.

設(shè),由于的值很小,因此在近似計(jì)算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)的頻率分布直方圖如圖所示.

(1)估計(jì)這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表);

(2)現(xiàn)按分層抽樣從質(zhì)量為[200,250),[250,300)的芒果中隨機(jī)抽取5個(gè),再?gòu)倪@5個(gè)中隨機(jī)抽取2個(gè),求這2個(gè)芒果都來(lái)自同一個(gè)質(zhì)量區(qū)間的概率;

(3)某經(jīng)銷(xiāo)商來(lái)收購(gòu)芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷(xiāo)商提出以下兩種收購(gòu)方案:

方案①:所有芒果以9元/千克收購(gòu);

方案②:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),對(duì)質(zhì)量高于或等于250克的芒果以3元/個(gè)收購(gòu).

通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)高三(2)班甲、乙兩名同學(xué)自高中以來(lái)每次考試成績(jī)的莖葉圖如圖,下列說(shuō)法正確的是(

A.乙同學(xué)比甲同學(xué)發(fā)揮的穩(wěn)定,且平均成績(jī)也比甲同學(xué)高

B.乙同學(xué)比甲同學(xué)發(fā)揮的穩(wěn)定,但平均成績(jī)不如甲同學(xué)高

C.甲同學(xué)比乙同學(xué)發(fā)揮的穩(wěn)定,且平均成績(jī)也比乙同學(xué)高

D.甲同學(xué)比乙同學(xué)發(fā)揮的穩(wěn)定,但平均成績(jī)不如乙同學(xué)高

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的左、右兩個(gè)頂點(diǎn)分別是A1,A2,左、右兩個(gè)焦點(diǎn)分別是F1,F2,P是雙曲線(xiàn)上異于A1,A2的任意一點(diǎn),給出下列命題,其中是真命題的有(

A.

B.直線(xiàn)的斜率之積等于定值

C.使得為等腰三角形的點(diǎn)有且僅有8個(gè)

D.的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知時(shí)都取得極值.

)求的值;

)若,求的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),設(shè)函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)對(duì)任意均有的取值范圍.

注:為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,Sn1=4an+2.

(1)設(shè)bn=an12an,證明:數(shù)列{bn}是等比數(shù)列;

(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量a=(-2,1),b=(x,y).

(1)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿(mǎn)足a·b=-1的概率;

(2)若x,y在連續(xù)區(qū)間[1,6]上取值,求滿(mǎn)足a·b<0的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案