已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).
分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)f(x)在x=1處的導(dǎo)數(shù),從而求出切線的斜率,再用點(diǎn)斜式寫出切線方程,化成斜截式即可,再根據(jù)直線l與函數(shù)f(x)、g(x)的圖象都相切建立等量關(guān)系,即可求出a的值;
(2)先令y1=f(1+x2)-g(x)求出y1’=0的值,再討論滿足y1’=0的點(diǎn)附近的導(dǎo)數(shù)的符號(hào)的變化情況,來確定極值,由函數(shù)y1在R上各區(qū)間上的增減及極值情況,可得方程f(1+x2)-g(x)=k的解的個(gè)數(shù).
解答:解:(1)f′(x)=
1
x
,f′(1)=1,故直線l的斜率為1,
切點(diǎn)為(1,f(1)),即(1,0)∴l(xiāng):y=x-1 ①
又∵g′(x)=x∴g′(1)=1,切點(diǎn)為(1,
1
2
+a)
∴l(xiāng):y-(
1
2
+a)=x-1,即y=x-
1
2
+a ②
比較①和②的系數(shù)得-
1
2
+a=-1,∴a=-
1
2
. (6分)
(2)由f(1+x2)-g(x)=k,即ln(1+x2)-
1
2
x2+
1
2
=k

設(shè)y1=ln(1+x2)-
1
2
x2+
1
2
,y2=ky1=
2x
1+x2
-x=
x(1-x)(x+1)
1+x2

令y'1=1,解得x=0,-1,1.
精英家教網(wǎng)
由函數(shù)y1在R上各區(qū)間上的增減及極值情況,可得
(1)當(dāng)0<k<
1
2
時(shí)有兩個(gè)解;
(2)當(dāng)k=
1
2
時(shí)有3個(gè)解;
(3)當(dāng)
1
2
<k<ln2
時(shí)有4個(gè)解
(4)當(dāng)k=ln2時(shí)有2個(gè)解;
(5)當(dāng)k>ln2時(shí)無解.(13分)
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及利用導(dǎo)數(shù)研究函數(shù)的極值和方程解的個(gè)數(shù),同時(shí)考查了函數(shù)與方程、分類討論的思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案