【題目】一批產(chǎn)品抽50件測(cè)試,其凈重介于13克與19克之間,將測(cè)試結(jié)果按如下方式分成六組:第一組,凈重大于等于13克且小于14克;第二組,凈重大于等于14克且小于15克;…第六組,凈重大于等于18克且小于19克.如圖是按上述分組方法得到的頻率分布直方圖.設(shè)凈重小于17克的產(chǎn)品數(shù)占抽取數(shù)的百分比為x,凈重大于等于15克且小于17克的產(chǎn)品數(shù)為y,則從頻率分布直方圖中可分析出x和y分別為( 。

A.0.9,35
B.0.9,45
C.0.1,35
D.0.1,45

【答案】A
【解析】解:(1)結(jié)合頻率分布直方圖,知
x=1﹣(0.06+0.04)=0.9.
y=50×(0.34+0.36)=50×0.7=35.
故選A.

結(jié)合頻率分布直方圖,知用1減去第五組和第六組的頻率之和就得到凈重小于17克的產(chǎn)品數(shù)占抽取數(shù)的百分比;第三組和第四組的頻率之和乘以50,就得到凈重大于等于15克且小于17克的產(chǎn)品數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖南)設(shè),且,證明
(1)
(2)不可能同時(shí)成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)據(jù)是上海普通職工n個(gè)人的年收入,設(shè)n個(gè)數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上世界首富的年收入 , 則這n+1個(gè)數(shù)據(jù)中,下列說法正確的是 ( )
A.年收入平均數(shù)大大增加,中位數(shù)一定變大,方差可能不變
B.年收入平均數(shù)大大增加,中位數(shù)可能不變,方差變大
C.年收入平均數(shù)大大增加,中位數(shù)可能不變,方差也不變
D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十八屆五中全會(huì)公報(bào)指出:努力促進(jìn)人口均衡發(fā)展,堅(jiān)持計(jì)劃生育的基本國(guó)策,完善人口發(fā)展戰(zhàn)略,全面實(shí)施一對(duì)夫婦可生育兩個(gè)孩子的政策,提高生殖健康、婦幼保健、托幼等公共服務(wù)水平.為了解適齡公務(wù)員對(duì)放開生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了100位30到40歲的公務(wù)員,得到情況如下表:

男公務(wù)員

女公務(wù)員

生二胎

40

20

不生二胎

20

20


(1)是否有95%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說明理由;
(2)把以上頻率當(dāng)概率,若從社會(huì)上隨機(jī)抽取3位30到40歲的男公務(wù)員,記其中生二胎的人數(shù)為X,求隨機(jī)變量X的分布列,數(shù)學(xué)期望.
附:K2=

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲船在島的正南方處,千米,甲船以每小時(shí)千米的速度向正北航行,同時(shí)乙船自出發(fā)以每小時(shí)千米的速度向北偏東的方向駛?cè),?dāng)甲,乙兩船相距最近時(shí),它們所航行的時(shí)間是( )

A. 分鐘 B. 分鐘 C. 分鐘 D. 分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a3=3,S7=28,在等比數(shù)列{bn}中,b3=4,b4=8.
(1)求an及bn
(2)設(shè)數(shù)列{anbn}的前n項(xiàng)和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, , , 分別是 的中點(diǎn),將 沿直線 折起,使二面角 的大小為 ,則 與平面 所成角的正切值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,圓的參數(shù)方程為 (φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為
(1)將圓的參數(shù)方程化為普通方程,在化為極坐標(biāo)方程;
(2)若點(diǎn)P在直線l上,當(dāng)點(diǎn)P到圓的距離最小時(shí),求點(diǎn)P的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是函數(shù) 的導(dǎo)數(shù), , ,若 ,則實(shí)數(shù) 的取值范圍為

查看答案和解析>>

同步練習(xí)冊(cè)答案