【題目】已知?jiǎng)訄AM經(jīng)過(guò)定點(diǎn),且與直線相切.
(1)求動(dòng)圓M的圓心的軌跡方程曲線C;
(2)設(shè)直線l與曲線C相交于M,N兩點(diǎn),且滿足,的面積為8,求直線l的方程.
【答案】(1)曲線C的方程為:,(2)直線l的方程為:
【解析】
(1)根據(jù)拋物線的定義可知,曲線C是以為焦點(diǎn),以直線為準(zhǔn)線的拋物線,寫出其方程即可
(2)設(shè)直線l:,,聯(lián)立直線與拋物線的方程,消元可得,由得到,所以直線l恒過(guò)定點(diǎn),然后由即可求出
(1)設(shè)點(diǎn),點(diǎn)到直線的距離為
依題意得
根據(jù)拋物線的定義可知,曲線C是以為焦點(diǎn),以直線為準(zhǔn)線的拋物線
所以曲線C的方程為:
(2)易知直線l的斜率顯然存在
設(shè)直線l:,
由得
所以
所以
所以,所以
所以直線l:
所以直線l恒過(guò)定點(diǎn)
所以
所以,即
所以,所以,即
所以直線l的方程為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],則下列命題中正確的是
①函數(shù)f(x)的最大值為1; ②函數(shù)f(x)的最小值為0;
③方程有無(wú)數(shù)個(gè)根; ④函數(shù)f(x)是增函數(shù).
A. ②③ B. ①②③ C. ② D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | 合計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
合計(jì) | 60 | 50 | 110 |
由K2=,
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)十人各拿一只水桶,同到水龍頭前打水,設(shè)水龍頭注滿第i(i=1,2,…,10)個(gè)人的水桶需Ti分鐘,假設(shè)Ti各不相同,當(dāng)水龍頭只有一個(gè)可用時(shí),應(yīng)如何安排他(她)們的接水次序,使他(她)們的總的花費(fèi)時(shí)間(包括等待時(shí)間和自己接水所花費(fèi)的時(shí)間)最少( )
A. 從Ti中最大的開始,按由大到小的順序排隊(duì)
B. 從Ti中最小的開始,按由小到大的順序排隊(duì)
C. 從靠近Ti平均數(shù)的一個(gè)開始,依次按取一個(gè)小的取一個(gè)大的的擺動(dòng)順序排隊(duì)
D. 任意順序排隊(duì)接水的總時(shí)間都不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若的反函數(shù)是,解方程:;
(2)設(shè),是否存在,使得等式成立?若存在,求出的所有取值,如不存在,說(shuō)明理由;
(3)對(duì)于任意,且,當(dāng)、、能作為一個(gè)三角形的三邊長(zhǎng)時(shí),、、也總能作為某個(gè)三角形的三邊長(zhǎng),試探究的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】樹立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來(lái)越深入人心,已形成了全民自覺(jué)參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,大量的統(tǒng)計(jì)數(shù)據(jù)表明,參與調(diào)查者中關(guān)注此問(wèn)題的約占80%.現(xiàn)從參與調(diào)查的人群中隨機(jī)選出人,并將這人按年齡分組:第1組,第2組,第3組,第4 組,第5組,得到的頻率分布直方圖如圖所示
(1) 求的值
(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取人,再?gòu)倪@人中隨機(jī)抽取人進(jìn)行問(wèn)卷調(diào)查,求在第1組已被抽到人的前提下,第3組被抽到人的概率;
(3)若從所有參與調(diào)查的人中任意選出人,記關(guān)注“生態(tài)文明”的人數(shù)為,求的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于無(wú)窮數(shù)列,若對(duì)任意,滿足且(是與無(wú)關(guān)的常數(shù)),則稱數(shù)列為數(shù)列.
(1)若(),判斷數(shù)列是否為數(shù)列,說(shuō)明理由;
(2)設(shè),求證:數(shù)列是數(shù)列,并求常數(shù)的取值范圍;
(3)設(shè)數(shù)列(,),問(wèn)數(shù)列是否為數(shù)列?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿足:①;②所有項(xiàng);③ .
設(shè)集合,將集合中的元素的最大值記為.換句話說(shuō), 是
數(shù)列中滿足不等式的所有項(xiàng)的項(xiàng)數(shù)的最大值.我們稱數(shù)列為數(shù)列的
伴隨數(shù)列.例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(1)若數(shù)列的伴隨數(shù)列為1,1,1,2,2,2,3,請(qǐng)寫出數(shù)列;
(2)設(shè),求數(shù)列的伴隨數(shù)列的前100之和;
(3)若數(shù)列的前項(xiàng)和(其中常數(shù)),試求數(shù)列的伴隨數(shù)列前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,正方形所在平面與正所在平面垂直,分別為的中點(diǎn),在棱上.
(1)證明:平面.
(2)已知,點(diǎn)到的距離為,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com