【題目】根據(jù)條件求下列各函數(shù)的解析式:

(1)已知函數(shù)f(x+1)=3x+2,則f(x)的解析式;

(2)已知是一次函數(shù),且滿足,求的解析式;

(3)已知滿足,求的解析式.

【答案】(1) f(x)=3x-1;(2) ;(3) ()

【解析】

1)利用換元法即可求出函數(shù)fx)的解析式;

2)設(shè)一次函數(shù)(),代入已知比較系數(shù)可得ab的方程組,解方程組可得結(jié)果;

3)將替換,構(gòu)造方程組即可得到的解析式.

1)設(shè)x1t,則xt1

f(t)3(t1)23t1,

f(x)3x1.

2)因為是一次函數(shù),可設(shè)()

所以有,即,

因此應(yīng)有,解得.

的解析式是.

3)因為,①

替換,得,②

由①②解得()

的解析式是 ().

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】攀枝花是一座資源富集的城市,礦產(chǎn)資源儲量巨大,已發(fā)現(xiàn)礦種76種,探明儲量39種,其中釩、鈦資源儲量分別占全國的63%和93%,占全球的11%和35%,因此其素有“釩鈦之都”的美稱.攀枝花市某科研單位在研發(fā)鈦合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標值值越大產(chǎn)品的性能越好)與這種新合金材料的含量(單位:克)的關(guān)系為:當時,的二次函數(shù);當時,.測得部分數(shù)據(jù)如下表:

(單位:克)

0

2

6

10

8

8

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)求該新合金材料的含量為何值時產(chǎn)品的性能達到最佳.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),如果存在給定的實數(shù)對,使得恒成立,則稱函數(shù)”.

1)判斷函數(shù),是否是函數(shù);

2)若是一個函數(shù),求出所有滿足條件的有序?qū)崝?shù)對

3)若定義域為的函數(shù)-函數(shù),且存在滿足條件的有序?qū)崝?shù)對,當時,的值域為,求當時函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)上的單調(diào)性;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點為F,左頂點為A,已知,其中O為坐標原點,e為橢圓的離心率.

求橢圓C的方程;

是否存在斜率為的直線l,使得當直線l與橢圓C有兩個不同交點MN時,能在直線上找到一點P,在橢圓C上找到一點Q,滿足?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐,

,證明平面平面;

當四棱錐的體積為且二面角為鈍角時,求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在R上的函數(shù),對任意的,恒有,且當, .

(1)的值;

(2)求證:對任意,恒有.

(3)求證:R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某建材商場國慶期間搞促銷活動,規(guī)定:如果顧客選購物品的總金額不超過600元,則不享受任何折扣優(yōu)惠;如果顧客選購物品的總金額超過600元,則超過600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計計算.

某人在此商場購物獲得的折扣優(yōu)惠金額為30元,則他實際所付金額為____元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個說法中,錯誤的選項有( ).

A.若函數(shù)上是單調(diào)增函數(shù),在上也是單調(diào)增函數(shù),則函數(shù)在R上是單調(diào)增函數(shù)

B.已知函數(shù)的解析式為,它的值域為,這樣的函數(shù)有無數(shù)個

C.把函數(shù)的圖像向右平移個單位長度,就得到了函數(shù)的圖像

D.若函數(shù)為奇函數(shù),則一定有

查看答案和解析>>

同步練習冊答案