【題目】在平面直角坐標系中,直線lyx3經(jīng)過橢圓1ab0)的一個焦點,且點(0,b)到直線l的距離為2

1)求橢圓E的方程;

2A、B、C是橢圓E上的三個動點,AB關(guān)于原點對稱,且|CA||CB|,求△ABC面積的最小值,并求此時點C的坐標.

【答案】12,

【解析】

1)利用點到直線的距離公式可求出橢圓的方程;

2)聯(lián)立過直線與橢圓方程,利用弦長公式可求出,由對稱性可知,,可得到面積與直線斜率的關(guān)系,即可得出答案.

1)由題可知,,即

到直線的距離為,

則有

解得

由①②得,

故橢圓的方程為:

2)由題可設(shè)過,,,兩點的直線方程為:,

解方程組

可得

則有,

如圖,

延長交橢圓于點,同理可得,

,

由圖形對稱性可知,

.則有,當且僅當,即時,等號成立

面積的最小值為,此時,點的坐標為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的極值;

2)證明:時,

3)若函數(shù)有且只有三個不同的零點,分別記為,設(shè)的最大值是,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】坐標系與參數(shù)方程:在平面直角坐標系中,以原點為極點,軸的非負半軸為極軸建立極坐標系,已知點的極坐標為,直線的極坐標方程為,且點在直線

)求的值和直線的直角坐標方程及的參數(shù)方程;

)已知曲線的參數(shù)方程為,(為參數(shù)),直線交于兩點,求的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是指大氣中直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物.雖然只是地球大氣成分中含量很少的組分,但它對空氣質(zhì)量和能見度等有重要的影響.我國標準如下表所示.我市環(huán)保局從市區(qū)四個監(jiān)測點2018年全年每天的監(jiān)測數(shù)據(jù)中隨機抽取天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖如圖所示.

(Ⅰ)求這天數(shù)據(jù)的平均值;

(Ⅱ)從這天的數(shù)據(jù)中任取天的數(shù)據(jù),記表示其中空氣質(zhì)量達到一級的天數(shù),求的分布列和數(shù)學期望;

(Ⅲ)以天的日均值來估計一年的空氣質(zhì)量情況,則一年(按天計算)中大約有多少天的空氣質(zhì)量達到一級.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形的邊長為4E,F分別為,的中點,以為棱將正方形折成如圖所示的的二面角,點M在線段.

1)若M的中點,且直線與由A,DE三點所確定平面的交點為G,試確定點G的位置,并證明直線;

2)是否存在M,使得直線與平面所成的角為;若存在,求此時的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若上單調(diào)遞減,求的取值范圍;

(2)若處取得極值,判斷當時,存在幾條切線與直線平行,請說明理由;

(3)若有兩個極值點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖已知橢圓是長軸的一個端點,弦過橢圓的中心,且.

(Ⅰ)求橢圓的方程:

(Ⅱ)設(shè)為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數(shù),使得,若存在,請求出的最大值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市統(tǒng)計局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在.

1)求居民收入在的頻率;

2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進一步分析,則月收入在的這段應(yīng)抽取多少人?

查看答案和解析>>

同步練習冊答案