【題目】已知函數(shù)的定義域為,當時, ,且對任意正實數(shù),滿足.
(1)求;
(2)證明在定義域上是減函數(shù);
(3)如果,求滿足不等式的的取值范圍.
【答案】(1);(2)證明見解析;(3).
【解析】試題分析:(1)由令,可得;(2)任取,且,則可得, ,從而可得結(jié)果;(3)先根據(jù)特值法求得,原不等式可化為, ,利用定義域及單調(diào)性列不等式組求解即可.
試題解析:(1)令,得.
(2)任取,且,則,
由題意, ,
即,所以在定義域上是減函數(shù).
(3)由,得,得.
由得: ,
,
由在定義域上是減函數(shù)得.
又,
因此的取值范圍為.
【方法點晴】本題主要考查抽象函數(shù)的定義域、解析式、抽象函數(shù)的單調(diào)性及抽象函數(shù)解不等式,屬于難題.根據(jù)抽象函數(shù)的單調(diào)性解不等式應(yīng)注意以下三點:(1)一定注意抽象函數(shù)的定義域(這一點是同學(xué)們?nèi)菀资韬龅牡胤,不能掉以輕心);(2)注意應(yīng)用函數(shù)的奇偶性(往往需要先證明是奇函數(shù)還是偶函數(shù));(3)化成 后再利用單調(diào)性和定義域列不等式組.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋子里裝有7個球,其中有紅球4個,編號分別為1,2,3,4;白球3個,編號分別為2,3,4.從袋子中任取4個球(假設(shè)取到任何一個球的可能性相同).
(Ⅰ)求取出的4個球中,含有編號為3的球的概率;
(Ⅱ)在取出的4個球中,紅球編號的最大值設(shè)為X,求隨機變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場共有土地50畝,這些地可種西瓜、棉花、玉米.這些農(nóng)作物每畝地所需勞力和預(yù)計產(chǎn)值如下表.若該農(nóng)場有20名勞動力,應(yīng)怎樣計劃才能使每畝地都能種上作物(玉米必種),所有勞動力都被安排工作(每名勞動力只能種植一種作物)且作物預(yù)計總產(chǎn)值達最高?
作物 | 勞力/畝 | 產(chǎn)值/畝 |
西瓜 | 1/2 | 0.6萬元 |
棉花 | 1/3 | 0.5萬元 |
玉米 | 1/4 | 0.3萬元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=4 x的焦點為F,A、B為拋物線上兩點,若 =3 ,O為坐標原點,則△AOB的面積為( )
A.8
B.4
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,已知2cos(B﹣C)﹣1=4cosBcosC.
(1)求A;
(2)若a= ,△ABC的面積為 ,求b+c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù),其中 是新樣式單車的月產(chǎn)量(單位:件),利潤總收益總成本.
(1)試將自行車廠的利潤元表示為月產(chǎn)量的函數(shù);
(2)當月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(>0, ≠1, ≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(1)求實數(shù)的值;
(2)當=1時,判斷函數(shù)在(﹣1,1)上的單調(diào)性,并給出證明;
(3)若且,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com