(本小題14分)已知函數(shù)
(Ⅰ)若且函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(Ⅱ)如果當時,不等式恒成立,求實數(shù)的取值范圍;
(Ⅲ)求證:,…….
(Ⅰ);(Ⅱ) ;(Ⅲ)見解析。
【解析】本試題主要是考查了導數(shù)在研究函數(shù)中的運用。求解函數(shù)的極值,和不等式的恒成立問題,以及證明不等式。
解:(Ⅰ)因為, x 0,則,
求解導數(shù),判定函數(shù)單調性,得到極值。
因為函數(shù)在區(qū)間(其中)上存在極值,
得到參數(shù)k的范圍。
(Ⅱ)不等式,又,則 ,構造新函數(shù),則
令,則,
分析單調性得到證明。
(Ⅲ)由(2)知:當時,恒成立,即,,
令 ,則;可以證明。
解:(Ⅰ)因為, x 0,則,
當時,;當時,.
所以在(0,1)上單調遞增;在上單調遞減,
所以函數(shù)在處取得極大值;……….2分
因為函數(shù)在區(qū)間(其中)上存在極值,
所以 解得;……….4分
(Ⅱ)不等式,又,則 ,,則;……….6分
令,則,
,在上單調遞增,,
從而, 故在上也單調遞增, 所以,
所以. ;……….8分
(Ⅲ)由(2)知:當時,恒成立,即,,
令 ,則;……….10分
所以 ,,……
,
n個不等式相加得
即……….14分
科目:高中數(shù)學 來源:2012-2013學年北京市高三第四次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題14分)
已知等比數(shù)列滿足,且是,的等差中項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,,求使 成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年四川省成都市高新區(qū)高三2月月考理科數(shù)學試卷(解析版 題型:解答題
(本小題14分)已知函數(shù),設。
(Ⅰ)求F(x)的單調區(qū)間;
(Ⅱ)若以圖象上任意一點為切點的切線的斜率 恒成立,求實數(shù)的最小值。
(Ⅲ)是否存在實數(shù),使得函數(shù)的圖象與的圖象恰好有四個不同的交點?若存在,求出的取值范圍,若不存在,說名理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年陜西省高三上學期月考理科數(shù)學 題型:解答題
(本小題14分)已知函數(shù)的圖像與函數(shù)的圖像關于點
對稱
(1)求函數(shù)的解析式;
(2)若,在區(qū)間上的值不小于6,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年四川省高三2月月考數(shù)學理卷 題型:解答題
(本小題14分)
已知函數(shù)的圖像在[a,b]上連續(xù)不斷,定義:
,,其中表示函數(shù)在D上的最小值,表示函數(shù)在D上的最大值,若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)為上的“k階收縮函數(shù)”
(1)若,試寫出,的表達式;
(2)已知函數(shù)試判斷是否為[-1,4]上的“k階收縮函數(shù)”,
如果是,求出對應的k,如果不是,請說明理由;
已知,函數(shù)是[0,b]上的2階收縮函數(shù),求b的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com