【題目】定義在上的函數(shù)同時(shí)滿(mǎn)足下列兩個(gè)條件:①對(duì)任意的恒有成立;②當(dāng)時(shí),.記函數(shù),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
【答案】D
【解析】
根據(jù)題中的條件得到函數(shù)的解析式為:f(x)=﹣x+2b,x∈(b,2b],又因?yàn)?/span>f(x)=k(x﹣1)的函數(shù)圖象是過(guò)定點(diǎn)(1,0)的直線(xiàn),再結(jié)合函數(shù)的圖象根據(jù)題意求出參數(shù)的范圍即可.
解:∵對(duì)任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且當(dāng)x∈(1,2]時(shí),f(x)=2﹣x,
∴f(x)=﹣x+2b,x∈(b,2b].
由題意得f(x)=k(x﹣1)的函數(shù)圖象是過(guò)定點(diǎn)(1,0)的直線(xiàn),
如圖所示紅色的直線(xiàn)與線(xiàn)段AB相交即可(可以與B點(diǎn)重合但不能與A點(diǎn)重合),
∴可得k的范圍為:,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點(diǎn),且.
(1)求證:平面;
(2)求二面角的余弦值;
(3)設(shè)為棱上的點(diǎn)(不與,重合),且直線(xiàn)與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),,,給出以下四種排序:①M,N,T;②M,T,N;③N,T,M;④T,N,M.從中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,解答相應(yīng)的問(wèn)題.
已知等比數(shù)列中的各項(xiàng)都為正數(shù),,且__________依次成等差數(shù)列.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前n項(xiàng)和為,求滿(mǎn)足的最小正整數(shù)n.
注:若選擇多種排序分別解答,按第一個(gè)解答計(jì)分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,,四邊形和四邊形是兩個(gè)全等的等腰梯形.
(1)求證:四邊形為矩形;
(2)若平面平面,,,,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某疫苗進(jìn)行安全性臨床試驗(yàn).該疫苗安全性的一個(gè)重要指標(biāo)是:注射疫苗后人體血液中的高鐵血紅蛋白(MetHb)的含量(以下簡(jiǎn)稱(chēng)為“M含量”)不超過(guò)1%,則為陰性,認(rèn)為受試者沒(méi)有出現(xiàn)高鐵血紅蛋白血癥(簡(jiǎn)稱(chēng)血癥);若M含量超過(guò)1%,則為陽(yáng)性,認(rèn)為受試者出現(xiàn)血癥.若一批受試者的M含量平均數(shù)不超過(guò)0.65%,且出現(xiàn)血癥的被測(cè)試者的比例不超過(guò)5%,則認(rèn)為該疫苗在M含量指標(biāo)上是“安全的”;否則為“不安全”.現(xiàn)有男、女志愿者各200名接受了該疫苗注射,按照性別分層,隨機(jī)抽取50名志愿者進(jìn)行M含量的檢測(cè),其中女性志愿者被檢測(cè)出陽(yáng)性的恰好1人.經(jīng)數(shù)據(jù)整理,制得頻率分布直方圖如下.(注:在頻率分布直方圖中,同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表.)
(1)請(qǐng)說(shuō)明該疫苗在M含量指標(biāo)上的安全性;
(2)請(qǐng)利用樣本估計(jì)總體的思想,完成這400名志愿者的列聯(lián)表,并判斷是否有超過(guò)99%的把握認(rèn)為,注射疫苗后,高鐵血紅蛋白血癥與性別有關(guān)?
男 | 女 | |
陽(yáng)性 | ||
陰性 |
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為(t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρcos().
(1)求曲線(xiàn)C和直線(xiàn)l的直角坐標(biāo)方程;
(2)若直線(xiàn)l交曲線(xiàn)C于A,B兩點(diǎn),交x軸于點(diǎn)P,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為正實(shí)數(shù),且滿(mǎn)足a+b+c=1.證明:
(1)|a|+|b+c﹣1|;
(2)(a3+b3+c3)()≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】攜號(hào)轉(zhuǎn)網(wǎng),也稱(chēng)作號(hào)碼攜帶、移機(jī)不改號(hào),即無(wú)需改變自己的手機(jī)號(hào)碼,就能轉(zhuǎn)換運(yùn)營(yíng)商,并享受其提供的各種服務(wù).2019年11月27日,工信部宣布攜號(hào)轉(zhuǎn)網(wǎng)在全國(guó)范圍正式啟動(dòng).某運(yùn)營(yíng)商為提質(zhì)量保客戶(hù),從運(yùn)營(yíng)系統(tǒng)中選出300名客戶(hù),對(duì)業(yè)務(wù)水平和服務(wù)水平的評(píng)價(jià)進(jìn)行統(tǒng)計(jì),其中業(yè)務(wù)水平的滿(mǎn)意率為,服務(wù)水平的滿(mǎn)意率為,對(duì)業(yè)務(wù)水平和服務(wù)水平都滿(mǎn)意的客戶(hù)有180人.
(Ⅰ)完成下面列聯(lián)表,并分析是否有的把握認(rèn)為業(yè)務(wù)水平與服務(wù)水平有關(guān);
對(duì)服務(wù)水平滿(mǎn)意人數(shù) | 對(duì)服務(wù)水平不滿(mǎn)意人數(shù) | 合計(jì) | |
對(duì)業(yè)務(wù)水平滿(mǎn)意人數(shù) | |||
對(duì)業(yè)務(wù)水平不滿(mǎn)意人數(shù) | |||
合計(jì) |
(Ⅱ)為進(jìn)一步提高服務(wù)質(zhì)量,在選出的對(duì)服務(wù)水平不滿(mǎn)意的客戶(hù)中,抽取2名征求改進(jìn)意見(jiàn),用表示對(duì)業(yè)務(wù)水平不滿(mǎn)意的人數(shù),求的分布列與期望;
(Ⅲ)若用頻率代替概率,假定在業(yè)務(wù)服務(wù)協(xié)議終止時(shí),對(duì)業(yè)務(wù)水平和服務(wù)水平兩項(xiàng)都滿(mǎn)意的客戶(hù)流失率為,只對(duì)其中一項(xiàng)不滿(mǎn)意的客戶(hù)流失率為,對(duì)兩項(xiàng)都不滿(mǎn)意的客戶(hù)流失率為,從該運(yùn)營(yíng)系統(tǒng)中任選4名客戶(hù),則在業(yè)務(wù)服務(wù)協(xié)議終止時(shí)至少有2名客戶(hù)流失的概率為多少?
附:,.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,四點(diǎn),,,中恰有三個(gè)點(diǎn)在橢圓C上,左、右焦點(diǎn)分別為F1、F2.
(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)F1且不平行坐標(biāo)軸的直線(xiàn)l交橢圓于P、Q兩點(diǎn),若PQ的中點(diǎn)為N,O為原點(diǎn),直線(xiàn)ON交直線(xiàn)x=﹣3于點(diǎn)M,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com