【題目】已知函數(shù)是定義在上的偶函數(shù),已知時(shí),.
(1)畫出偶函數(shù)的圖像;
(2)指出函數(shù)的單調(diào)遞增區(qū)間及值域;
(3)若直線與函數(shù)恰有個(gè)交點(diǎn),求的取值范圍.
【答案】(1)詳見解析;(2)單調(diào)遞增區(qū)間是和,函數(shù)的值域?yàn)?/span>;(3)
【解析】
(1)先畫出時(shí)函數(shù)的圖像,再根據(jù)函數(shù)為偶函數(shù),圖像關(guān)于軸對(duì)稱,畫出時(shí),函數(shù)的圖像.
(2)根據(jù)(1)中畫出的函數(shù)的圖像,求得函數(shù)的單調(diào)遞增區(qū)間和值域.
(3)根據(jù)直線與函數(shù)的圖像有個(gè)交點(diǎn),求得的取值范圍.
(1)由于函數(shù)為偶函數(shù),圖像關(guān)于軸對(duì)稱,故先畫出時(shí)函數(shù)的圖像,關(guān)于軸對(duì)稱得到的圖像.由此畫出圖像如下圖所示.
(2)由圖可知,函數(shù)的單調(diào)遞增區(qū)間是和.函數(shù)的值域?yàn)?/span>.
(3)由圖可知,要使直線與函數(shù)的圖像有個(gè)交點(diǎn),則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知由正數(shù)組成的等比數(shù)列{an}中,公比q="2," a1·a2·a3·…·a30=245, 則a1·a4·a7·…·a28= ( )
A.25
B.210
C.215
D.220
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A= ,P為△ABC的外心,若 =λ1 +2λ2 ,其中λ1與λ2為實(shí)數(shù),則λ1+λ2的最大值為( )
A.
B.1﹣
C.
D.1+
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)元,未租出的車每輛每月需要維護(hù)費(fèi)元.
(1)當(dāng)每輛車的月租金定為元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C的坐標(biāo)分別為(﹣ ,0),( ,0),(m,n),G,O′,H分別為△ABC的重心,外心,垂心.
(1)寫出重心G的坐標(biāo);
(2)求外心O′,垂心H的坐標(biāo);
(3)求證:G,H,O′三點(diǎn)共線,且滿足|GH|=2|OG′|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市調(diào)研考試后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認(rèn)為“成績與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào).試求抽到9號(hào)或10號(hào)的概率.
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,且圖象關(guān)于直線對(duì)稱.
(1)求的解析式;
(2) 若函數(shù)的圖象與直線在上只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面命題正確的是( )
A.“”是“”的 充 分不 必 要條件
B.命題“若,則”的 否 定 是“ 存 在,則”.
C.設(shè),則“且”是“”的必要而不充分條件
D.設(shè),則“”是“”的必要 不 充 分 條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+ ﹣2lna﹣k
(1)若k=0,證明f(x)>0
(2)若f(x)≥0,求k的取值范圍;并證明此時(shí)f(x)的極值存在且與a無關(guān).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com