【題目】如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 , AD=2,求四邊形繞AD旋轉(zhuǎn)一周所圍成幾何體的表面積及體積.

【答案】解:四邊形ABCD繞AD旋轉(zhuǎn)一周所成的
幾何體,如右圖:
S表面=S圓臺(tái)下底面+S圓臺(tái)側(cè)面+S圓錐側(cè)面
=πr22+π(r1+r2)l2+πr1l1
=
=25π+35π+4π
=60π+4π.
體積V=V圓臺(tái)﹣V圓錐
=[25π++4π]×4﹣×2π×2×2
=×39π×4﹣×8π
=
所求表面積為:60π+4π,體積為:

【解析】旋轉(zhuǎn)后的幾何體是圓臺(tái)除去一個(gè)倒放的圓錐,根據(jù)題目所給數(shù)據(jù),求出圓臺(tái)的側(cè)面積、圓錐的側(cè)面積、圓臺(tái)的底面積,即可求出幾何體的表面積.求出圓臺(tái)體積減去圓錐體積,即可得到幾何體的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)棱底面, , , 是棱的中點(diǎn).

(Ⅰ)證明:平面平面;

(Ⅱ)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),且),,(其中的導(dǎo)函數(shù)).

(1)當(dāng)時(shí),求的極大值點(diǎn);

(2)討論的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015 年 12 月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為 2015 年以來(lái)最嚴(yán)重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市 2015 年 12 月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:

時(shí)間

星期一

星期二

星期三

星期四

星期五

星期六

星期日

車流量(萬(wàn)輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點(diǎn)圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(提示數(shù)據(jù):

(2)利用(1)所求的回歸方程,預(yù)測(cè)該市車流量為 12 萬(wàn)輛時(shí)的濃度.

參考公式:回歸直線的方程是,

其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+ax(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)在[,2]上的最大值和最小值;
(2)當(dāng)函數(shù)f(x)在(,2)單調(diào)時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為平行四邊形,平面平面, ,.

(Ⅰ)求證: ;

(Ⅱ)若三角形是邊長(zhǎng)為的等邊三角形,求三棱錐外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小型風(fēng)力發(fā)電項(xiàng)目投資較少,開發(fā)前景廣闊.受風(fēng)力自然資源影響,項(xiàng)目投資存在一定風(fēng)險(xiǎn).根據(jù)測(cè)算,IEC(國(guó)際電工委員會(huì))風(fēng)能風(fēng)區(qū)的分類標(biāo)準(zhǔn)如下:

風(fēng)能分類

一類風(fēng)區(qū)

二類風(fēng)區(qū)

平均風(fēng)速m/s

8.5---10

6.5---8.5

某公司計(jì)劃用不超過100萬(wàn)元的資金投資于A、B兩個(gè)小型風(fēng)能發(fā)電項(xiàng)目.調(diào)研結(jié)果是:未來(lái)一年內(nèi),位于一類風(fēng)區(qū)的A項(xiàng)目獲利%的可能性為0.6,虧損%的可能性為0.4;

B項(xiàng)目位于二類風(fēng)區(qū),獲利35%的可能性為0.6,虧損10%的可能性是0.2,不賠不賺的可能性是0.2.

假設(shè)投資A項(xiàng)目的資金為)萬(wàn)元,投資B項(xiàng)目資金為)萬(wàn)元,且公司要求對(duì)A項(xiàng)目的投資不得低于B項(xiàng)目.

(Ⅰ)記投資A,B項(xiàng)目的利潤(rùn)分別為,試寫出隨機(jī)變量的分布列和期望, ;

(Ⅱ)根據(jù)以上的條件和市場(chǎng)調(diào)研,試估計(jì)一年后兩個(gè)項(xiàng)目的平均利潤(rùn)之和 的最大值,并據(jù)此給出公司分配投資金額建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,空間四邊形ABCD中,AB=CD,AB⊥CD,E、F分別為BC、AD的中點(diǎn),則EF和AB所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=a (0<a<1)的單調(diào)遞增區(qū)間是(
A.(﹣∞,
B.( ,+∞)
C.(﹣∞,﹣
D.(﹣ ,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案