【題目】已知函數(shù)f(x)=2sin(ωx﹣ )+2 sinωx,(ω>0)周期T∈[π,2π],x=π為函數(shù)f(x)圖象的一條對稱軸,
(1)求ω;
(2)求f(x)的單調遞增區(qū)間.

【答案】
(1)解:∵函數(shù)f(x)=2sin(ωx﹣ )+2 sinωx=2sinωx(﹣ )﹣2cosωx +2 sinωx

= sinωx﹣cosωx=2sin(ωx﹣ )(ω>0)周期T= ∈[π,2π],∴1≤ω≤2.

∵x=π為函數(shù)f(x)圖象的一條對稱軸,∴ωπ﹣ =kπ+ ,即ω=k+ ,k∈Z,

∴ω=


(2)解:∵f(x)=2sin( x﹣ ),令2kπ﹣ x﹣ ≤2kπ+ ,求得 ≤x≤ + ,

可得f(x)的調遞增區(qū)間為[ , + ],k∈Z


【解析】(1)利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性以及圖象的對稱性求得ω的值.(2)利用正弦函數(shù)的調性,求得f(x)的單調遞增區(qū)間.
【考點精析】根據(jù)題目的已知條件,利用正弦函數(shù)的單調性的相關知識可以得到問題的答案,需要掌握正弦函數(shù)的單調性:在上是增函數(shù);在上是減函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項和為Sn , 且滿足2Sn=2n+1+λ(λ∈R). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4月23人是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查,下面是根據(jù)調查結果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書謎”,低于60分鐘的學生稱為“非讀書謎”
(1)求x的值并估計全校3000名學生中讀書謎大概有多少?(經(jīng)頻率視為頻率)

非讀書迷

讀書迷

合計

15

45

合計


(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書謎”與性別有關? 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次考試中,5名同學的數(shù)學、物理成績如表所示:

學生

A

B

C

D

E

數(shù)學(x)

89

91

93

95

97

物理(y)

87

89

89

92

93

(1)根據(jù)表中數(shù)據(jù),求物理分y關于數(shù)學分x的回歸方程,并試估計某同學數(shù)學考100分時,他的物理得分;

(2)要從4名數(shù)學成績在90分以上的同學中選出2名參加一項活動,以X表示選中的同學中物理成績高于90分的人數(shù),試解決下列問題:

①求至少選中1名物理成績在90分以下的同學的概率;

②求隨機變變量X的分布列及數(shù)學期望

附:回歸方程:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|xex+1|,關于x的方程f2(x)+2sinαf(x)+cosα=0有四個不等實根,sinα﹣cosα≥λ恒成立,則實數(shù)λ的最大值為(
A.﹣
B.﹣
C.﹣
D.﹣1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,a,b,c分別為∠A,∠B,∠C的對邊,且滿足(2c﹣b)tanB=btanA.
(1)求A的大;
(2)求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合為下述條件的函數(shù)的集合:①定義域為;②對任意實數(shù),都有

1)判斷函數(shù)是否為中元素,并說明理由;

2)若函數(shù)是奇函數(shù),證明:

3)設都是中的元素,求證:也是中的元素,并舉例說明,不一定是中的元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB與△PAD都是等邊三角形,平面ABCD⊥平面PBD.
(I)證明:CD⊥平面PBD;
(II)求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= sin ,若存在f(x)的極值點x0滿足x02+[f(x0)]2<m2 , 則m的取值范圍是(
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

同步練習冊答案