【題目】已知函數(shù),且在處.
(1)求的值;并求函數(shù)在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間.
【答案】(1) (2)增區(qū)間為 ,減區(qū)間為
【解析】試題分析:(Ⅰ)先求函數(shù)的定義域,然后求導(dǎo),利用導(dǎo)數(shù)的幾何意義求切線方程.
(Ⅱ)利用f'(x)<0,求函數(shù)的單調(diào)遞減區(qū)間.
試題解析:
函數(shù)的導(dǎo)數(shù)為,因?yàn)楹瘮?shù)在x=1處=0,
所以f'(1)=﹣2+a﹣1=0,解得a=3.
所以f(x)=﹣x2+3x+1﹣lnx,,
所以f(2)=﹣4+6+1﹣ln2=3﹣ln2,,
所以函數(shù)f(x)在點(diǎn)(2,f(2))處的切線方程為,即.
(Ⅱ)由(Ⅰ)知,
由,即2x2﹣3x+1<0,解得,即函數(shù)的增區(qū)間為().
由,得2x2﹣3x+1>0,解得,
即函數(shù)的減區(qū)間為(0,)和(1,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足f(1)=1,且對(duì)任意的x∈R,都有f′(x)< ,則不等式f(log2x)> 的解集為( )
A.(1,+∞)
B.(0,1)
C.(0,2)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求的極大值和極小值;
(2)若在處的切線與y軸垂直,直線y=m與的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)邊長(zhǎng)分別是a,b,c,已知c=2,C= .
(1)若△ABC的面積等于 ,求a,b;
(2)求 +a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在x軸正半軸上的圓C與直線相切,與y軸交于M,N兩點(diǎn),且.
Ⅰ求圓C的標(biāo)準(zhǔn)方程;
Ⅱ過點(diǎn)的直線l與圓C交于不同的兩點(diǎn)D,E,若時(shí),求直線l的方程;
Ⅲ已知Q是圓C上任意一點(diǎn),問:在x軸上是否存在兩定點(diǎn)A,B,使得?若存在,求出A,B兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:ρsin2θ﹣6cosθ=0,直線l的參數(shù)方程為: (t為參數(shù)),l與C交于P1 , P2兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程及l(fā)的普通方程;
(2)已知P0(3,0),求||P0P1|﹣|P0P2||的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓,直線.
(1)求證: ,直線與圓總有兩個(gè)不同的交點(diǎn);
(2)設(shè)與圓交于不同的兩點(diǎn),求弦中點(diǎn)的軌跡方程;
(3)若點(diǎn)分弦所得的向量滿足,求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量(毫克)與時(shí)間(小時(shí))成正比;藥物釋放完畢后,與的函數(shù)關(guān)系式為(為常數(shù)),如圖所示.據(jù)圖中提供的信息,回答下列問題:
(1)寫出從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時(shí)間(小時(shí))之間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到毫克以下時(shí),學(xué)生方可進(jìn)教室。那么藥物釋放開始,至少需要經(jīng)過多少小時(shí)后,學(xué)生才能回到教室?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,AC=BC=AB=2,AA1=3,D點(diǎn)是AB的中點(diǎn)
(1)求證:BC1∥平面CA1D.
(2)求三棱錐B-A1DC的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com