【題目】某校高一年級(jí)要組建數(shù)學(xué)、計(jì)算機(jī)、航空模型三個(gè)興趣小組,某同學(xué)只選報(bào)其中的2個(gè),則基本事件共有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】

寫基本事件時(shí)從數(shù)學(xué)開始往后選取2個(gè),如{數(shù)學(xué),計(jì)算機(jī)}是一個(gè)基本事件,把三個(gè)元素都考慮到,不重不漏.

所有基本事件為{數(shù)學(xué),計(jì)算機(jī)}{數(shù)學(xué),航空模型}{計(jì)算機(jī),航空模型},共3個(gè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列程序運(yùn)行的結(jié)果為_____.

i=1;

S=0;

while S<=30

 S=S+i;

 i=i+1;

end

print(%io(2),i);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組有3名男生和2名女生,從中任選2名同學(xué)參加演講比賽,那么互斥但不對(duì)立的兩

個(gè)事件是( )

A. 至少有1名男生與全是女生

B. 至少有1名男生與全是男生

C. 至少有1名男生與至少有1名女生

D. 恰有1名男生與恰有2名女生

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的四個(gè)頂點(diǎn)分別為,左右焦點(diǎn)分別為,若圓上有且只有一個(gè)點(diǎn)滿足.

1求圓的半徑

2若點(diǎn)為圓上的一個(gè)動(dòng)點(diǎn),直線交橢圓于點(diǎn),交直線于點(diǎn),的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1若曲線在點(diǎn)處的切線方程為,求的值;

2求函數(shù)的單調(diào)區(qū)間;

3當(dāng)時(shí), 對(duì),使得成立, 則實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是 ( )

A. 任何兩個(gè)變量都具有相關(guān)關(guān)系

B. 人的知識(shí)與其年齡具有相關(guān)關(guān)系

C. 散點(diǎn)圖中的各點(diǎn)是分散的沒有規(guī)律

D. 根據(jù)散點(diǎn)圖求得的回歸直線方程都是有意義的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中是大于的常數(shù).

1求函數(shù)的定義域;

2當(dāng)時(shí), 求函數(shù)上的最小值;

3若對(duì)任意恒有,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:

m,n,m,n,則;

,l,則l;

lm,ln,則mn;

l,l .

其中真命題的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱側(cè)面底面,,底面為直角梯形,其中,,,中點(diǎn)

(1)求證:平面;

(2)求銳二面角的余弦值

查看答案和解析>>

同步練習(xí)冊(cè)答案